The TIMES model generator: Status of the code

Uwe Remme, Antti Lehtila, Gary Goldstein

ETSAP 2004 Spring Workshop, Paris
20–25 June, 2004

Development
- By ETSAP
- Implementation in GAMS

TOOLS
- VEDA-FE (Front End)
- VEDA Analyst

TIMES
(The Integrated MARKAL EFOM System)

Methodology
- Bottom-up Model
- Perfect competition
- Perfect foresight
- Optimisation (LP/MIP)

Min/Max Objective function
s.t.
Equations, Constraints
Decision Variables \leftrightarrow Solution
Input parameters

Features
- Multi-region
- Inter-temporal
- Elastic demands
- Vintaging
- Load curve
- Endogeneous learning
Features of TIMES

• Flexible process description:
 • General process description with three process types: general processes (PRC), exchange processes (IRE) and storage processes (STG)
 • Ratios of input and output flows can be determined by optimization
 • Time slice operation according to commodity requirements
 • Direct access to all flow variables (e.g. for usage in user constraints, to associate emissions with fuels)

• Full vintaging of processes (optional by process):
 • Technical parameters of a process as a function of the vintage year
 • Shaping / decay of input parameters as a function of age

• User-controllable inter-/extrapolation of input data to model years:
 • Linear and log-linear interpolation, direct extrapolation or fill-in with EPS
 • Default rules if no options specified

• More accurate cost representation:
 • Annual cost accounting
 • Spread investment builds and payment
 • Investment leads (e.g., R&D and construction) and decommissioning
 • Splits of O&M components (e.g., labor)

Features of TIMES (contd.)

• High independence of data vs. model years achieved

• Flexible time periods:
 • Unequal period duration
 • Technical parameters of a process can be defined over a two-dimensional space of time (vintage × age)
 • Past investments based on vintage year not residual curves

• Flexible definition of time slices:
 • Three levels (seasonal, weekly, daynite) with an arbitrary number on each level
 • All time slice levels are available for all processes and commodities
 • Storage and load shift processes may operate between any time slices

• Flexible discounting options:
 • Technology-dependent discount rates, economic vs. technical lifetimes
 • Time-dependent discount rates at sector/technology level if desired
 • Optional mid-year discounting (default: beginning-of-year discounting)
Features of TIMES (contd.)

- User constraints:
 - All variables can be used in a user constraint
 - Possibility to define inter-temporal constraints
 - Possibility to define cumulative constraints over region or period
 - Option to formulate growth constraints

- Option to use elastic demands (linear staircase formulation)

- Endogenous technological learning (MIP approach, technology clusters)

- Option to define discrete capacity extensions (lumpy investments)

- Mechanisms to add extensions (model equations/variables, report routines) that can be turned-on/off (e.g. VTT, IER extensions)

- Connection to VEDA-BE via GAMS GAMS2VEDA utility (allowing user augmentation for addition data dumps including input data)

Recent modifications in the TIMES code

- Performance improvements (e.g. investment costs calculated in a similar fashion as salvage value)

- Bug fixes (e.g. ETL, elastic demand, objective function)

- Linkage with VEDA4-BE (primal variables, costs by type and prc/com, reduced costs, shadow prices of commodity balance and peaking eqn)

- Enhancements of the code:
 - Time-dependent discount rates
 - Option to use discrete capacity extension
 - Improvements in user constraints: easier formulation for growth constraints and addition of import/export flows as possible variables
Discrete capacity extension

- Capacity can only be added in different predefined block sizes resulting in a MIP problem.
- Blocks may have different specific investment costs, e.g. specific costs decrease with the block size.

\[
VAR_{____N_C_A_P_{r_p}} = \sum_j VAR_{____N_D_S_C_{r_p_j_i}} \cdot ncap_{_____d_i_s_c_{r_p_j_i}} \forall r_{p}, \forall p
\]
\[
\sum_j VAR_{____N_D_S_C_{r_p_j_i}} = 1 \forall r_{p}, \forall p \quad (\Leftrightarrow \text{SOS1 set supported by some solvers})
\]
\[
VAR_{____N_D_S_C_{r_p_j_i}} \in [0; 1]
\]

\(j\): index for binary variables
\(VAR_{____N_D_S_C_{r_p_j_i}}\): binary variable
\(ncap_{_____d_i_s_c_{r_p_j_i}}\): allowable sizes of capacity extensions

Formulation of growth constraints

- Based on user constraints
- Possibility to define not only growth constraints but also phase-out constraints
- Growth constraints applicable to all variables
- More than one technology may be involved in a growth constraint, e.g.

\[
VAR_{____C_A_P_{r_p,Tech_d}} \leq g_{r_p,load}^{Tech_d} \cdot VAR_{____C_A_P_{r_p-1,Tech_d}} + g_{r_p,load}^{Tech_d} \cdot VAR_{____C_A_P_{r_p-1,Tech_d}} + \text{const.}
\]
Performance of a multi-regional TIMES model

- Single region model
 - # processes: 986
 - # commodities: 411
 - # periods: 11
 - # timeslices: 4 (WD, WN, SD, SN)
- Each region is connected to all other regions by an exchange process (→ 105 exchange processes in the 15 region model, 300 in the 25 region model)

<table>
<thead>
<tr>
<th>Reduced matrix</th>
<th>1 region</th>
<th>15 regions</th>
<th>20 regions</th>
<th>25 regions</th>
</tr>
</thead>
<tbody>
<tr>
<td># rows</td>
<td>30,628</td>
<td>467,611</td>
<td>625,696</td>
<td>784,925</td>
</tr>
<tr>
<td># columns</td>
<td>25,234</td>
<td>387,826</td>
<td>521,516</td>
<td>657,450</td>
</tr>
<tr>
<td># nonzeros</td>
<td>230,532</td>
<td>3,487,429</td>
<td>4,663,164</td>
<td>5,845,675</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Memory usage before solver is called [MB]</th>
<th>1 region</th>
<th>15 regions</th>
<th>20 regions</th>
<th>25 regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Execution</td>
<td>13</td>
<td>347</td>
<td>542</td>
<td>781</td>
</tr>
<tr>
<td>Matrix generation</td>
<td>22</td>
<td>331</td>
<td>465</td>
<td>925</td>
</tr>
<tr>
<td>Barrier time</td>
<td>27</td>
<td>509</td>
<td>746</td>
<td>1678</td>
</tr>
<tr>
<td>Crossover time</td>
<td>4</td>
<td>227</td>
<td>490</td>
<td>1147</td>
</tr>
<tr>
<td>Reporting</td>
<td>14</td>
<td>270</td>
<td>394</td>
<td>580</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>1684</td>
<td>2627</td>
<td>4811</td>
</tr>
</tbody>
</table>

(Using GAMS 21.3, CPLEX 9.0, Pentium 4, 3.2 GHz, 2 GB RAM)

Features implemented by IER and VTT that could be considered for adoption in the common code

- Market/product allocation constraints (IER, VTT)
 - Useful for calibrating / constraining market shares etc.
- Back-pressure / condensing mode availability of CHP processes (IER)
 - Useful for realistic representation of CHP heat production
- Commodity-dependent availability factors (VTT)
 - Useful for e.g. realistic representation of CHP heat production
 - Has been included as pending in the system documentation
- Generalized constraints for process flows (VTT)
 - Useful for modeling of many specific process characteristics
- Extended shaping parameters for vintaged processes (VTT)
 - Age-dependent emission factors and efficiencies
- … etc. (IER, VTT, …)
Future work

• VEDA-FE/TIMES evolution

• Documentation
 • System documentation
 • User guide, with process examples by type
 • Full sample model, including VEDA-BE tables

• Enhanced Quality Control of input data

• Streamlining of GAMS code

• Simplification of some basic input parameters (GAMS / VEDA-FE)

• Further enhancements of the methodology:
 • TIMES/MACRO
 • Stochastic programming
 • MARKAL features of interest