I. Nuclear Power – Current Status

Nuclear Power Capacity in Japan

<table>
<thead>
<tr>
<th>LWRs in Operation</th>
<th>Number of Units</th>
<th>Generating Capacity (MWe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressurized Water Reactors</td>
<td>23</td>
<td>19,366</td>
</tr>
<tr>
<td>Boiling Water Reactors</td>
<td>27</td>
<td>23,664</td>
</tr>
<tr>
<td>Advanced BWRs</td>
<td>2</td>
<td>2,712</td>
</tr>
<tr>
<td>Total</td>
<td>52</td>
<td>45,742</td>
</tr>
<tr>
<td>LWRs under Construction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiling Water Reactors</td>
<td>1</td>
<td>1,100</td>
</tr>
<tr>
<td>Advanced BWRs</td>
<td>2</td>
<td>2,738</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>3,838</td>
</tr>
<tr>
<td>Advanced Thermal Reactor in Operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fugen (Prototype)</td>
<td>1</td>
<td>165</td>
</tr>
<tr>
<td>Fast Breeder Reactor under Construction</td>
<td></td>
<td>280</td>
</tr>
</tbody>
</table>
Distribution of Nuclear Power Stations

Growth of Nuclear Power Capacity
Electric Power Generation in Japan

<table>
<thead>
<tr>
<th>Year 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWh / Year</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

- Nuclear: 38%
- Coal: 12%
- LNG: 32%
- Hydro: 9%
- Oil: 8%

(By 9 Utilities)

Technical Subjects for Future Development

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Time Range</th>
<th>Technical Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement of Safety</td>
<td>Short</td>
<td>Passive Safety, Higher Reliability of Equipments / Systems</td>
</tr>
<tr>
<td>Reduction of Generation Costs</td>
<td>Short</td>
<td>Simplification of Systems, Higher Fuel Burn-up</td>
</tr>
<tr>
<td>Effective Use of Plutonium</td>
<td>Short - Long</td>
<td>From Burning to Breeding, Backup Strategy for FBR Development</td>
</tr>
<tr>
<td>Disposal of High Level Wastes</td>
<td>Mid - Long</td>
<td>Transmutation or Recycle of Minor Actinides</td>
</tr>
<tr>
<td>Expansion of Application</td>
<td>Long</td>
<td>Hydrogen Production, District Heating, Industry Process Heat</td>
</tr>
<tr>
<td>Assure Fuel Resources</td>
<td>Long</td>
<td>Development of Breeders, Uranium from Seawater, Thorium</td>
</tr>
</tbody>
</table>
II. Assessment of Nuclear Energy Systems

Analytical Tools and Database

- Energy-Economy-Environment Analysis
- Nuclear Fuel Cycle Analysis
- Cost-Benefit-Risk Analysis
- Statistical Database
- Technology Database

Future Role of Nuclear Energy

Strategy of Nuclear Energy Development

Analysis of Power Reactors and Fuel Cycle Systems

Analytical Tools
- Long-Term Simulation Model
- Optimization Model
- Cost Assessment Model

Reactor Types
- Reduc. Moder. Water Reactors
- Small LWRs
- Accelerator Driven Systems

Subjects
- Develop. of New Reactor
- Effective Pu Utilization
- Waste Management

Criteria of Evaluation
- Resource
- Economics
- Environment

Outputs
- Long-Term Outlook
- Role of New Tech.
- R&D Issues

- Non Proliferation
- Social Acceptance

- R&D Planning
- Long-Term Strategy
1. Study on Effective Plutonium Utilization

Plutonium Recycling in Water Cooled Reactors

Example of RMWR Designs

Entire Reactor Core
- Electric Output: 1,356 MWe
- Number of Fuel Assemblies: 900
- Number of Control Rods: 283
- Outer Diameter: 7,600 mm
- Pitch of Fuel Rod: 1.3 mm
- Outer Diameter of Fuel Rod: 13.7 mm

Fuel Assembly
- Control Rods
- Fuel Rods
- Channel Box
- UO₂-PuO₂ Fuel
- UO₂ Blanket
- Diameter: 228 mm
Simulation of Nuclear Fuel Cycle Systems

Nuclear Power Capacity in RMWR Scenario

GWe

Year

2000 2050 2100 2150 2200

LWR (Enriched Uranium)

LWR (Plutonium)

RMWR (BR=1.06)

Nuclear Power Capacity in FBR Scenario

GWe

Year

2000 2050 2100 2150 2200

LWR (Enriched Uranium)

LWR (Plutonium)

FBR (BR=1.2)
Consumption of Natural Uranium

- **LWR (No Recycling of Plutonium)**
- **LWR (Maximum Plutonium Recycling)**
- **LWR + RMWR (2020 -)**
- **LWR + FBR (2050 -)**

Electricity Generation Costs

- Next Generation LWR with Enriched Uranium
 - Conventional Uranium
 - Seawater Uranium
- RMWR (Reprocessing Cost High*)
 - 45 GWD/t
 - 70 GWD/t
- RMWR (Reprocessing Cost Low**)
 - 45 GWD/t
 - 70 GWD/t

- Increase Fuel Burup
- Reduce Reprocessing Cost

* RMWR reproces. cost = two times UO2 reproces. cost
** RMWR reproces. cost = UO2 reproces. cost
2. Study on Impacts by Nuclear Phase-out
Development of an Energy–Economy Model

Nuclear Phase-out

MARKAL Model
Adaptation of Energy
- Technology Mix
- Electricity vs Fuel
- Conservation

Macro-Economy Model
More Imports of Fossil Fuel
Utilization of High Cost Alternatives
Income Transfer to Overseas
Lower Productivity of Electric Utilities
Economic Adaptation - Final Demand - Inputs to Industries
Loss of Gross Domestic Products

Reduction in Utility

Basic Structure of the Energy-Economy Model

Labor Population
Labor Service
Capital Service
Capital Stock
Income
Final Demand
Consumption
Govern. Consum.
Export
Non-Energy Import
Energy Import
Investment
Removal of Stock
Macro Economy Model
Energy System Cost
Income
Domestic Production
Energy Import
Energy Service Demand
MARKAL Energy Model
Maximize "Discounted Utility - Energy System Cost"

Endogenous Variables
Exogenous Variables
Structure of the Macroeconomic Model

Removal rate $k_{dep}(i,t)$ is approximately determined by $k_{dep}(j,t)$ and industry distribution of capital good i at the base year.

Capital Stock of Industry j
- $k_{dep}(j,t)$
- $k_{dep}(i,t)$
- $k_{sindex}(j,t)$

Final Demand
- $GDP_i(t)$
- $Y_i(t)$

Intermediate Demand
- $X_i(j,t)$

Labor Service
- $KSER_{i}(j,t)$
- $LYS_{i}(j,t)$

Utility
- $CL_i(t)$

Laborers by Industry
- $L_i(t)$

Final Demand
- $Y_i(t)$

Intermediate Demand
- $X_i(j,t)$

Domestic Production
- $Y_i(t)$

Energy Service Demand in MARKAL
- $ED(t) = (ED_0(t)/Y_0(t)) \times Y(t)$
- $Y(t)$ is GDP or Industry Production
- ED_0 and Y_0 are for the reference case

Imports in Economy Model
- $IM('Mining') = \text{Import Coef.} \times \text{Production of Material Industry}$
- $R(t) \times \text{Energy Imports (from MARKAL)}$
- $IM('Oil Prod.') = (1-R(t)) \times \text{Energy Imports (from MARKAL)}$
- $R(t)$ is currently fixed to 0.78.

Objective Function
- $\text{Obj} = U - EC$
- U: Final Consumption
- EC: Energy System Cost

Note: The increase of U by one unit is not conceptually identical with the decrease of EC by one unit. Therefore, the linked model should be used within the range of GDP increases that satisfies the condition ‘unit increase of U > unit decrease of EC’.
Procedures of Analysis

1. Establishment of Energy Scenario
 - Basic Assumptions – GDP, Energy Service Demand, Fuel Prices
 - Optimum Energy Scenario by MARKAL

2. Establishment of Reference Energy-Economy Scenario
 - Determine Economic Parameters to Meet Assumed Economic Growth
 (Total Factor Productivity, Flexibility of K-L Substitution, etc.)

3. Investigate the Impacts by Nuclear Phase-out
 - Optimize the Energy-Economy Systems without Nuclear Energy
 - Analyze Sensitivity with Respect to Potential Flexibility of Economy
 (Goods/Services Mix of Final Consumption, Intermediate Inputs, and Investment)
 - Analyze Sensitivity to Other Assumptions (e.g. CO₂ Emission Caps)

Results of Analysis

To be presented at the next ETSAP Workshop.