Modelling the global energy system feedback to welfare in developing energy secure climate policy scenarios

James Glynn, Maurizio Gargiulo, Dr. Brian Ó’Gallachóir

UCC-ETSAP Workshop:
Methodologies linking energy systems models and economic models
5th February 2014
Outline

• Rationale
 – First steps in understanding energy system feedback methods

• Learning to use ETSAP-TIAM-MSA

• Input data

• Calibration
 – Data requirements
 – Default parameters

• Example results

• Learning outcomes thus far
Rationale

• Understanding of Energy System – Macro economy Feedback tools
• MACRO Stand Alone was tested with ETSAP-TIAM 2010
 – Safe place to start (“The TIAM Monster”)
 – Plug in an Play? (not so much)
• Plan: Learn by doing
 – Explore MSA parameter sensitivities
• Model Questions?
 – Cost/Value of a Climate mitigating energy system?
 – Macro-economy response to future scenario energy systems?
 – Energy service demands response to macro-economy adjustments?
• Implement lessons learned to provide some first steps in initial macro-feedback in Irish-TIMES
ETSAP-TIAM

• TIMES Integrated Assessment Model
• Global 15 Region Energy Systems Model
 – Least cost optimisation
 – Energy Technology choice
 – Elastic Demands
 – Energy Commodity Trade
 – Climate Module
• Using ETSAP-TIAM 2010 “Common Version”
 – DISCLAIMER: Results are for illustration of MSA only
• ETSAP-TIAM working group project
 – Newer version, updated, improved & stable
 – Shale Resources, Iron & Steel, Gas Trade, China,...
Macro Stand Alone

- Implemented in VEDA_FE
- Cumulative Utility Maximisation
 - Energy Service Demand adjustment
 - Energy System Cost
- VAR_Macro result variables (VEDA_BE)
 - Production
 - Consumption
 - Investment
 - Energy System Cost
 - Reference GDP
 - Loss in GDP
TIAM - MACRO interaction schema

Energy sector
(ETA or MARKAL sub-model)

Energy

Energy cost

Macro-economy
(MACRO sub-model)

Labour

Consumption

Investment

Capital
MSA Calibration (CSA)

• Critical Data requirements
 – Initial Regional GDP
 – Regional GDP growth rates for each period
 • Synchronous with TIAM/TIMES Demand Drivers
 – Calibration of default input parameters

• Calibration runs of reference case scenario
 – Create Demand Decoupling factors
 • For each Energy service demand, by region and time period
Input Parameters

TIMES-MSA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM_ARBM</td>
<td>Arbitrary multiplier for the last period replication</td>
<td>1.000</td>
</tr>
<tr>
<td>TM_DEFVAL(item)</td>
<td>Default values for regional Macro constants</td>
<td></td>
</tr>
<tr>
<td>TM_DEFVAL(ESC)</td>
<td></td>
<td>1.028</td>
</tr>
<tr>
<td>TM_DEPR(r)</td>
<td>Depreciation rate (percentage)</td>
<td>5.000</td>
</tr>
<tr>
<td>TM_DMTOL(r)</td>
<td>Lower bound factor for the demand variables</td>
<td>0.500</td>
</tr>
<tr>
<td>TM_ESUB(r)</td>
<td>Elasticity of substitution</td>
<td>0.250</td>
</tr>
<tr>
<td>TM_GDP0(r)</td>
<td>GDP in the first period</td>
<td></td>
</tr>
<tr>
<td>TM_GR(r,y)</td>
<td>Projected annual GDP growth in per cent</td>
<td></td>
</tr>
<tr>
<td>TM_IVETOL(r)</td>
<td>Investment and energy cost upper bound tolerance</td>
<td>0.500</td>
</tr>
<tr>
<td>TM_KGDP(r)</td>
<td>Initial capital to GDP ratio</td>
<td>2.500</td>
</tr>
<tr>
<td>TM_KPVS(r)</td>
<td>Initial capital value share in all production factors</td>
<td>0.250</td>
</tr>
<tr>
<td>TM_SCALE_CST</td>
<td>Scaling factor for cost units</td>
<td>0.001</td>
</tr>
<tr>
<td>TM_SCALE_NRG</td>
<td>Scaling factor for the demand units</td>
<td>1.000</td>
</tr>
<tr>
<td>TM_SCALE_UTIL</td>
<td>Scaling factor for the utility function</td>
<td>0.001</td>
</tr>
<tr>
<td>TM_QFAC(r)</td>
<td>Switch for market penetration penalty function *</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Initial GDP Values & Regional Rates

<table>
<thead>
<tr>
<th>TM_GDP0</th>
<th>2005</th>
<th>2010</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
<th>2060</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFR</td>
<td>1230</td>
<td>5.1</td>
<td>4.3</td>
<td>3.4</td>
<td>3.3</td>
<td>3.3</td>
<td>2.5</td>
</tr>
<tr>
<td>AUS</td>
<td>610</td>
<td>2.9</td>
<td>2.3</td>
<td>1.6</td>
<td>1.1</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>CAN</td>
<td>900</td>
<td>2.9</td>
<td>2.2</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>CHI</td>
<td>4110</td>
<td>9.6</td>
<td>6.3</td>
<td>5.5</td>
<td>4.4</td>
<td>4.0</td>
<td>1.9</td>
</tr>
<tr>
<td>CSA</td>
<td>2270</td>
<td>4.2</td>
<td>3.7</td>
<td>3.0</td>
<td>2.9</td>
<td>3.2</td>
<td>2.4</td>
</tr>
<tr>
<td>EEU</td>
<td>830</td>
<td>3.2</td>
<td>2.2</td>
<td>2.0</td>
<td>1.4</td>
<td>1.3</td>
<td>1.0</td>
</tr>
<tr>
<td>FSU</td>
<td>1080</td>
<td>5.9</td>
<td>5.4</td>
<td>5.5</td>
<td>2.4</td>
<td>2.2</td>
<td>1.5</td>
</tr>
<tr>
<td>IND</td>
<td>1470</td>
<td>8.6</td>
<td>8.1</td>
<td>6.9</td>
<td>5.0</td>
<td>3.9</td>
<td>1.9</td>
</tr>
<tr>
<td>JPN</td>
<td>4200</td>
<td>2.2</td>
<td>1.5</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>MEA</td>
<td>1560</td>
<td>5.4</td>
<td>4.1</td>
<td>3.2</td>
<td>2.9</td>
<td>2.8</td>
<td>2.1</td>
</tr>
<tr>
<td>MEX</td>
<td>790</td>
<td>3.9</td>
<td>4.3</td>
<td>3.7</td>
<td>3.4</td>
<td>3.3</td>
<td>2.4</td>
</tr>
<tr>
<td>ODA</td>
<td>2220</td>
<td>4.7</td>
<td>4.0</td>
<td>3.0</td>
<td>2.6</td>
<td>2.5</td>
<td>1.8</td>
</tr>
<tr>
<td>SKO</td>
<td>780</td>
<td>3.2</td>
<td>2.4</td>
<td>1.4</td>
<td>1.3</td>
<td>1.4</td>
<td>1.0</td>
</tr>
<tr>
<td>USA</td>
<td>10150</td>
<td>2.8</td>
<td>2.2</td>
<td>2.0</td>
<td>1.4</td>
<td>1.3</td>
<td>1.0</td>
</tr>
<tr>
<td>WEU</td>
<td>9940</td>
<td>2.8</td>
<td>2.2</td>
<td>2.0</td>
<td>1.4</td>
<td>1.3</td>
<td>1.0</td>
</tr>
</tbody>
</table>
REF Case MSA Calibration + 3p5 Case

Primary Energy Requirement (PJ)

- Renewable except hydro and biomass
- Oil
- Nuclear
- Hydro
- Gas
- Coal
- Biomass

<table>
<thead>
<tr>
<th>Year</th>
<th>ET_3p5</th>
<th>ET_3p5_MSA</th>
<th>ET_Ref</th>
<th>ET_Ref_MSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2030</td>
<td>600,000</td>
<td>800,000</td>
<td>1,000,000</td>
<td>1,200,000</td>
</tr>
<tr>
<td>2040</td>
<td>600,000</td>
<td>800,000</td>
<td>1,000,000</td>
<td>1,200,000</td>
</tr>
<tr>
<td>2050</td>
<td>600,000</td>
<td>800,000</td>
<td>1,000,000</td>
<td>1,200,000</td>
</tr>
<tr>
<td>2060</td>
<td>600,000</td>
<td>800,000</td>
<td>1,000,000</td>
<td>1,200,000</td>
</tr>
</tbody>
</table>
Demand Adjustment – Non ElasDem

Primary Energy Requirement (PJ)

- Renewable except hydro and biomass
- Oil
- Nuclear
- Hydro
- Gas
- Coal

![Graph showing energy demand adjustment for different scenarios over years 2030, 2040, and 2050.](chart)

- ET_3p5
- ET_3p5_MSA
- ET_NED_3p5
- ET_NED_3p5_MSA
- ET_Ref

2030 . 2040 . 2050
Terminal Condition Effects on Macro Investment Period T-1

Macro Investment (bn US$ 2000)

2005	2007	2012	2020	2030	2040	2050	2060
ET_3p5_MSA | ET_Ref_MSA | ET_3p5_MSA | ET_Ref_MSA | ET_3p5_MSA | ET_Ref_MSA | ET_3p5_MSA | ET_Ref_MSA

Regions:
- WEU
- USA
- SKO
- ODA
- MEX
- MEA
- JPN
- MEX
- IND
- FSU
- EEU
- CSA
- CHI
- AUS
- AFR

Energy Policy & Modelling Group
Learning Outcomes

- Initially VEDA_FE did not solve ETSAP-TIAM-MSA
 - Missing MACRO attributes
 - Some Data import bugs
 - Solved with recent updates

- Grappling with scale of TIAM
 - Some results seem questionable in 2010 version
 - Possible Interesting GDP benefits to carbon capture/ afforestation mitigation technologies? – AUS, CAN

- Initial MSA DDF calibration method working

- Next Steps with ETSAP-TIAM-MSA
 - Estimation of regional elasticity's of substitution
 - Adjust/calibrate default parameters

- Start Smaller with Irish-TIMES-MSA

Thank you for your attention