Coupling TIMES-PanEU and NEWAGE: Energy and macroeconomic impacts of decentralization trends in the European electricity sector

Robert Beestermöller, Markus Blesl

Institute of Energy Economics and the Rational Use of Energy (IER), University of Stuttgart

ETSAP-UCC Workshop: Methodologies linking energy systems models and economic models
February 4 – 5, 2014
University College Cork
Outline

1. Introduction
 - Decentralization trends in the European electricity sector

2. Methodology
 - TIMES-PanEU
 - NEWAGE
 - Model Interface

3. Scenario analysis and results
 - Scenario definition
 - Energy system impacts (TIMES-PanEU)
 - Macroeconomic impacts (NEWAGE)

4. Summary and outlook
Decentralisation trends in the European electricity sector

- Increased use of renewable energies for electricity generation
- Renewable energy systems operate at a lower scale than conventional plants
- Large power plant projects face acceptance problems in the society
 → There is a decentralization trend in the European electricity sector

- What consequences does this trend trigger?
 - Impacts on fossil fuels usage and CO$_2$-emissions
 - Impacts on electricity prices
 - Macroeconomic impacts of electricity price increases

- Coupling an European energy system model (TIMES-PanEU) with a global CGE model (NEWAGE) makes it possible to assess these issues
TIMES-PanEU

- 30 region model (EU 28, No, CH, IS)
- Energy system model
 SUPPLY: reserves, resources, exploration and conversion Country specific
 renewable potential and availability (onshore wind, offshore wind, ocean, geothermal, biomass, biogas, hydro)
 Electricity: public electricity plants, CHP plants and heating plants
 Residential and Commercial: End use technologies (space heating, water heating, space cooling and others)
 Industry: Energy intensive industry (Iron and steel, aluminium copper ammonia and chlorine, cement, glass, lime, pulp and paper), food, other industries, autoproducer and boilers
 Transport: Different transport modes (cars, buses, motorcycles, trucks, passenger trains, freight trains), aviation and navigation
- Country specific differences for characterisation of new conversion and end-use technologies
- Electricity Grid, Biofuel and biomass trade
- Time horizon 2010 - 2050
- GHG: CO$_2$, CH$_4$, N$_2$O, SF$_6$ /Others pollutants: SO$_2$, NO$_x$, CO, NMVOC, PM$_{2.5}$, PM$_{10}$
NEWAGE: a global CGE model with hybrid features

Special / hybrid features:

Imperfect Labor Market:
Rigid wages, wage curve
Differentiation by qualification (skilled, unskilled)

Electricity Generation:
Technology based modeling: portfolio with 18 generation options

Flexible resolution of regions and sectors (current: 19x27)

19 sectors:
- Agriculture
- Energy production (5)
- Energy intensive ind. (5)
- Rest of industry (4)
- Construction
- Transport
- Services

27 regions:
- Germany (2)
- EU-countries (8)
- USA (1)
- BRICS (5)
- Other OECD (4)
- Rest of world (7)

Main data sources:
GTAP8, IEA, et al.

Dynamics:
Recursive-dynamic, 2007-2030, 5-year steps

Technological Change:
Autonomous energy efficiency index (AEEI)

Electricity Generation:
Technology based modeling: portfolio with 18 generation options

Factor markets
- Capital
- Labor
- Resources
- Carbon

Production
- Fossil Fuel Production
- Sectoral Production
- Aggregation Pool (Armington)

Foreign trade
- Exports
- Internat. Transport
- Imports

Investments
- Savings
- Consumption

Representative Agent
- Households and Government
- Tax Revenue

Implicit tax system

Closed circle of income
Model interface

Model input data

- **TIMES-PanEU specific data:**
 - Energy system
 - Exogenous demands

- **NEWAGE specific data**:
 - National accounts (GTAP)
 - Hybrid technology data

- **Common inputs:**
 - Crude oil price paths

Scenario constraints:

- Energy and climate policies

TIMES-PanEU

Model output

Coupling interface:

- CO₂-emissions in the EU (ETS + Non-ETS)
- Electricity prices in the EU

NEWAGE

Model output
Scenario definition

<table>
<thead>
<tr>
<th></th>
<th>ETS75</th>
<th>C80</th>
<th>C80_DEZ_EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG reduction targets</td>
<td>▪ ETS: -34% until 2030 (w.r.t. 2005)</td>
<td>▪ -80% until 2050</td>
<td></td>
</tr>
<tr>
<td></td>
<td>▪ ETS: -75% until 2050 (w.r.t. 2005)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Investments in large power plant and CCS</td>
<td>▪ Based on economic decisions</td>
<td></td>
<td>▪ Large power plant restriction in the EU from 2020</td>
</tr>
</tbody>
</table>
Electricity generation (TIMES-PanEU)

Net electricity supply [TWh]

Share of renewable electricity generation of total gross electricity consumption

- Electricity storage (excl. pump storage)
- Electricity Imports Desertec
- Net Imports w/o Desertec
- Others / Waste non-ren.
- Other Renewables
- Biomass / Waste ren.
- Solar
- Wind offshore
- Wind onshore
- Hydro (incl. pump storage)
- Nuclear
- Gas CCS
- Gas w/o CCS
- Oil
- Lignite CCS
- Lignite w/o CCS
- Coal CCS
- Coal w/o CCS
- Share of renewable energies

2010	ETS75	C80	Œko	ETS75	C80	C80_DEZ_EU	ETS75	C80	C80_DEZ_EU	ETS75	C80	C80_DEZ_EU
2020
2030
2040
2050
Model interface: results as inputs

- CO₂ emissions and electricity prices of the C80 and C80_DEZ_EU scenarios compared to the reference scenario ETS75

CO₂ emissions of scenario C80 (in % of ETS75)

CO₂ emissions of scenario C80_DEZ_EU (in % of ETS75)

Electricity prices in the EU in scenario C80 (in % of ETS75)

Electricity prices in the EU in scenario C80_DEZ_EU (in % of ETS75)
Output activity of different industries (NEWAGE)

Iron & Steel

- 2020: C80, C80_DEZ_EU
- 2030: C80, C80_DEZ_EU

Chemicals

- 2020: C80, C80_DEZ_EU
- 2030: C80, C80_DEZ_EU

Machinery

- 2020: C80, C80_DEZ_EU
- 2030: C80, C80_DEZ_EU
GDP and employment (NEWAGE)

GDP (real) in the EU in scenario C80 (in % of ETS75)

GDP (real) in the EU in scenario C80_DEZ_EU (in % of ETS75)

Employment in the EU in scenario C80 (in % of ETS75)

Employment in the EU in scenario C80_DEZ_EU (in % of ETS75)
Summary and Outlook

- Decentralisation is connected with an increase in renewable electricity generation and induces higher (net) electricity imports
 - This leads to a decreased use of fossil fuels (incl. CCS) and lower CO$_2$-emissions
- Decentralisation leads to electricity price increases, especially in Eastern Europe
 - Energy intensive industries reduce their output activity, especially in the iron & steel sector
 - This leads to negative GDP and employment impacts, especially in Eastern Europe with minor changes in the rest of the EU
- Further research with TIMES-PanEU an NEWAGE
 - Further improvement of the interface (iterative procedures)
 - Technologically disaggregated modelling of household energy demand in NEWAGE (implementation of cars & buildings)
Thank you for your attention!
Back up
General coupling of TIMES-PanEU and NEWAGE

Exogenous input assumptions
(Policy interventions; Fossil fuel prices; technical progress; economic growth)

Soft-link iteration procedure
- Energy demands (%-changes)
- Sectoral CO₂ emissions (indices)
- Energy prices (indices)

Adjust model inputs

Constrain the model

TIMES-PanEU

Technology-rich bottom-up European energy system model

Output (quantities + prices):
- Primary energy demand
- Technology mix
- GHG emissions
- Final energy prices

Possibility of adding a macro module (TIMES-Macro)

NEWAGE

Output (values + indices):
- Production and consumption activities, relative prices, Income levels (variables)
- Employment, Trade, Investments, etc. (indicators)

Possibility of adding more technologies (e.g. vehicles, buildings, heating systems)

Global top-down CGE model with hybrid features:
- Imperfect labor market (unemployment, skills)
- Electricity generation (18 different generation technologies)

Additional technology information

Possibility of adjusting model inputs

Possibility of constraining the model
CO$_2$ emissions