Analysis of different sector coupling paths for CO₂ mitigation in the German Transport sector

Source: Forschungszentrum Jülich/Tricklabor for the Kopernikus project “Power-to-X”
Outline

1. Introduction
2. TIMES Model
 - General modelling approach
 - Implementation of trolley trucks
 - E-Mobility
 - Scenario Analyses
3. Results
4. Conclusion
Motivation

German national targets for reducing the Greenhouse Gas emissions compared to 1990 [1]

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>overall GHG emissions</td>
<td>-27.2%</td>
<td>-40%</td>
<td>-55%</td>
<td>-70%</td>
<td>-80% to -95%</td>
</tr>
</tbody>
</table>

- ambitious goals for GHG emission reductions
- almost complete decarbonisation of the entire German energy system necessary
- need of renewables in heat and transport sector
- potentials of renewables mostly in electricity sector
TIMES-D model
TIMES-D model
General modelling approach

- depiction of the entire German energy system
- derived from the TIMES-PanEU model
- **linear optimization**: total system costs minimized
- complete competition between different technologies assumed
- **GHG emissions** of the system are recorded
- division into **280 time segments of 3 hours** each
- model horizon: **2010-2050**
- determination of the **economically optimal energy supply structure** for a given target
TIMES-D model
Implementation of Trolley Trucks

Technology characteristics

- electrically powered trucks
- energy supply via pantograph and **overhead lines**
- construction of the necessary infrastructure over motorways (as discussed) **cost-intensive**

Modelling

- one of multiple technologies in transport sector
- selection of technologies in model dependent on process-costs (amongst other things) e.g. investment or maintenance costs
- contribution to meeting the freight traffic demand limited to **90%**
 costs for complete electrification of motorways distributed over assumed max. number of vehicles

problem: clear differences in the utilisation of motorways in Germany

overhead lines over heavily used motorways can power more vehicles than over low-frequented ones

new implementation
- infrastructure costs distributed unevenly over three stages
- stage 1: 1/3 of vehicles but 1/6 of infrastructure
- potential of one stage limited to 1/3 of the max. overall contribution from Trolley Trucks
• e-mobility: all electrically operated vehicles in transport sector (except for heavy goods traffic and trains)
• sufficient charging infrastructure has to be used to charge the batteries
• Power-to-grid possible
• one of multiple technology pathways in transport sector
TIMES-D model
scenario analyses

- gradual reduction of the system’s **GHG emissions**
- three scenarios with great **differences in the long-term reduction targets**
- Trolley Trucks: scenario S90 with and without **disaggregated infrastructure**
- analysis of the charging infrastructure’s influence
- **share of simultaneously usable infrastructure** limited to 10%, 50% and 90%

<table>
<thead>
<tr>
<th>scenario</th>
<th>2020</th>
<th>2030</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>S80</td>
<td>-40%</td>
<td>-55%</td>
<td>-80%</td>
</tr>
<tr>
<td>S90</td>
<td>-40%</td>
<td>-55%</td>
<td>-90%</td>
</tr>
<tr>
<td>S95</td>
<td>-40%</td>
<td>-58%</td>
<td>-95%</td>
</tr>
</tbody>
</table>
Results
Results
Freight Traffic – potential of the Trolley Truck

Meeting the demand of freight transport

- huge discrepancy between the scenarios:
 - entire possible demand provided by Trolley Trucks in S95
 - no usage at all in S80
- deployment of trolley trucks highly dependent on the selection of GHG reduction targets
Results
Freight Traffic – influence of disaggregated infrastructure modelling

- share of electricity:
 - 30% (disaggregated infrastructure)
 - 21% (base)
- usage of Trolley Trucks depends strongly on the modelling of infrastructure
Results

Freight Traffic

Overall electrical load from trolley trucks in 2050

- **13.3 GW** additional load in S90
- **18 GW** additional load in S95
- load directly dependent on driving behaviour

Electrical load in GW

day of the week

- Monday
- Tuesday
- Wednesday
- Thursday
- Friday
- Saturday
Results

E-Mobility

Meeting the personal transport demand

- no difference between the scenarios until 2035
- contribution of electric vehicles varies between 21% (scenario S80) and 75% (S95) in 2050
- choice of the long-term target has a major impact on the utilization of electric vehicles
Results

E-Mobility

- higher electricity consumption in 2050 due to electrification of all sectors
- in the S95 scenario e-mobility accounts for 10% of the total power consumption in 2050 (280 PJ)
- S95: 190 PJ more by e-mobility compared to S80
Results

E-Mobility – electrical load caused by charging

huge peaks for 50% availability
Results

E-Mobility – residual load and load by charging

![Diagram showing residual load and load by charging for 50% infrastructure availability in 2050](chart.png)
Conclusion
Conclusion

- contribution of the Trolley Truck **heavily dependent** on the choice of emission reduction targets with **no usage** at all in the S80 scenario
- maximal **electrical load of trolley trucks is 18 GW**, likely to vary significantly between different regions
- **significant influence of detailed modelling of infrastructures** on the results of Trolley Truck analyses
- **GHG emission reduction targets with major impact on the utilisation of e-mobility** (varying between 21% and 75%)
- the load caused by charging electric vehicles can be regulated by limiting the simultaneousness of the charging infrastructure
- by not limiting the simultaneousness e-mobility can serve as a **very useful flexibility option**, causing large **additional loads of around 40 GW** however
References

Thank you!

Felix Kattelmann

e-mail felix.kattelmann@ier.uni-stuttgart.de
phone +49 (0) 711 685-87845
fax +49 (0) 711 685-87873

Universität Stuttgart
Institute for Energy Economics and Rational Energy Use
Heßbrühlstr. 49a
70565 Stuttgart
Germany

This work is part of the ENavi project, financed by the Federal Ministry of Education and Research of Germany.