





# Deepening cost analysis for Onshore Wind Technology

Alessia Elia, Michael Taylor, Fionn Rogan, Brian Ó Gallachóir ETSAP Workshop, Stuttgart, GERMANY | Nov 9<sup>th</sup> 2018

# Scope



To develop a more relevant method to investigate costs of energy technologies

- What is missing, and which needs improvements?
- To what extent can each costs component be analysed?
- The lesson learned can be applied for different energy technologies?

# Costs drivers investigated in current methods



#### HIGH LEVEL DRIVERS → MACRO-SYSTEM DYNAMICS

LEARNING DUE TO DEPLOYMENT

KNOWLEDGE SPILLOVERS BETWEEN ACTORS

**POLICY SUPPORT** 

ECONOMIES OF SCALE (SIZE – PLANT, INDUSTRY)

RESEARCH ACHIVEMENTS

LOCAL INDUSTRY DEVELOPMENT

**INPUTS COSTS** 

#### LOW LEVEL DRIVERS → OBSERVABLE TECHNICAL PARAMETERS

ECONOMIES OF SCALE (SIZE – DEVICE)

TECHNICAL QUALITY (PERFORMANCE, MATERIAL USE)

SITE
CHARACTERISTICS
(DISTANCE)

INSTALLATION EFFICIENCY (TIME)

# Methods to investigate cost reductions



|                                                     | COST-BREAKDOWN STRUCTURE                          | BOTTOM-UP COST MODEL                                                                    | LEARNING CURVES                                                   |
|-----------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| System boundaries level of analysis                 | PROJECT LEVEL                                     | INDUSTRY/NATIONAL LEVEL                                                                 | INDUSTRY/NATIONAL/GLOBAL<br>LEVEL                                 |
| Data gathering and<br>Drivers of costs<br>reduction | ENGINEERING ASSESSMENT (TECHNICAL AND SPECIFICS)  | DATABASE ANALYSIS<br>(TECHNICAL BUT GENERAL)                                            | DATABASE ANALYSIS (TECHNICAL BUT<br>GENERAL, MACRO-SECTOR TRENDS) |
|                                                     | OBSERVABLE TECHNICAL PARAMETERS/LOW LEVEL DRIVERS | OBSERVABLE TECHNICAL PARAMETERS/LOW LEVEL DRIVERS                                       | MACRO ECONOMICS DRIVERS/ HIGH<br>LEVEL DRIVERS                    |
| Extent range (Scope)                                | CASE SPECIFIC (limited)                           | GENERAL CASE                                                                            | GENERAL CASE                                                      |
| Reduction costs approach by drivers                 | SENSITIVITY ANALYSIS (STATIC)                     | 1. SENSITIVITY ANALYSIS (STATIC) 2. TIME VARIATION OF TECHNO-ECONOMIC DRIVERS (DYNAMIC) | REGRESSION ANALYSIS IN TIME<br>(ECONOMETRIC MODEL-DYNAMIC)        |

### Methods characteristics





#### **ISSUES**

1. LOW LEVEL FACTORS ARE NOT ALL DIRECTLY LINKED TO ALL MACRO SYSTEM LEARNING DRIVERS (later costs analysis)

#### **ISSUES**

1. LIMITS TO ADDRESS REALITY - DRIVER/FACTOR (before costs analysis)

# LCOE cost components





Technology components (e.g. blades, transformers, PV module)

Main costs components of technology costs:

Capital costs
Input material
Labor costs
Energy costs

Overhead

Hard/Soft deployment costs:
Planning and project design costs
Transport costs
Installation/assembly
Grid connection costs

Main costs components of technology costs:
Equipment costs
Labor costs
Financial costs
Customers
acquisition/administration
Technical feasibility
Overhead

Land site lease cost Legal-administrative costs (tax, rates, insurances) Operation Maintenance, replacement

Primary energy resource
Transportation costs

Transformation costs

Discount rate (financial risk)

Capacity Factor (Resource quality)

Technology life

Technology choice

Degradation

# Turbine technology price

weight, device scale)





### Technology price – Input costs drivers (Vestas)





- □ ASP Turbine (Vestas-DK) [\$2016/kW]
- Capital Depreciation and amortization costs
- Energy costs (Price and quantity)
- Materials (price and quantity)
- Labour (transport +administration +O&M)
- Labour costs (manufacturing +installation)

### Input drivers changes 2005-2017



#### Total cost reduction → 568 \$/kW

| [\$2016/kW]         | Reduction | %          |
|---------------------|-----------|------------|
| Contributions of    |           |            |
| input costs drivers | 129       | 23%        |
| Other costs         |           |            |
| (overhead)          | 439       | <b>77%</b> |



### Material costs variation (Vestas)



#### 1<sup>st</sup> case: NO CHANGE IN COMMODITY PRICES

|                     | 2005     | 2017      |           |           |
|---------------------|----------|-----------|-----------|-----------|
| [\$2016/kW]         | v80 -2MW | v100-2 MW | v110-2    | v126-3.45 |
|                     |          |           | MW        | MW        |
| STEEL               | 94       | 79        | 96        | 106       |
| CAST IRON           | 14       | 9         | 9         | 15        |
| ALUMINUM            | 34       | 14        | 13        | 8         |
| COPPER              | 16       | 9         | 9         | 7         |
| POLYMER TURBINE     | 3        | 3         | 4         | 3         |
| POLYMER (CABLES)    | 11       | 4         | 4         | 2         |
| CONCRETE            | 78       | 57        | 65        | 56        |
| CERAMIC/GLASS       |          |           |           |           |
| +CARBON             | 29       | 33        | 23        | 22        |
|                     |          |           |           |           |
| TOTAL COSTS OF      |          |           |           |           |
| MATERIALS           | 280      | 208       | 223       | 220       |
| CONTRIBUTION ON     |          |           |           |           |
| MATERIAL EFFICIENCY |          | 72        | <b>57</b> | 59        |

# 2<sup>nd</sup> case: NO CHANGES IN TURBINE TECHNOLOGY

| <b>DIFFERENCES 2005-2017</b> [\$2 | 2016/kW] |
|-----------------------------------|----------|
| (V90 – 2MW)                       |          |
| STEEL                             | 14.96    |
| CAST IRON                         | -8.47    |
| ALUMINUM                          | 6.06     |
| COPPER                            | -5.44    |
| POLYMER TURBINE                   | -0.27    |
| POLYMER (CABLES)                  | -0.94    |
| CONCRETE                          | 7.35     |
| CERAMIC/GLASS +                   | 1.40     |
| CARBON                            |          |
| TOTAL COSTS OF                    | 15       |
| MATERIALS                         |          |

17-21% MARKET CHANGES
79-83% TECHNICAL IMPROVEMENTS

### Overhead (still unexplained)



#### 439 \$2016/kW → ~77% Wind Turbine Technology price

#### How can we cover the gap for overhead costs?

**COMPANY PROFIT** 

Average of main manufactures in the world

TRANSPORTATION
/ INSTALLATION
COSTS

Local behavior – Country specific analysis

SUPPLIER COMPETITORS
COSTS

Local behavior - Industry formation and market dynamics

FINANCIAL and OTHERS

Market, policy, manufacture learning, industry scale-up

### 1FLC – market deployment



15% - US

**Global market deployment: 21%** 



### Conclusion and Follow-up



- Most of technology costs components are still not explained
- Focus on understanding cost reduction dynamics of overhead costs is needed

Are they dependent on local or global conditions?

Project level data could provide more insights?

More specific data needs: Low drivers or global drivers? Which is the best approach?

#### FUTURE ANALYSES

- 1) Balance of the system of wind farm at project level analysis
- 2) Consideration stage where still deployment is not achieved