An SG-TIMES Model for Singapore’s Electricity Sector

Victor Nian
Bin Su

Date:
Monday, 17 June 2013
Table of Contents

- **Introduction**
 - Singapore energy landscape
 - Current energy efficiency policies in Singapore

- **Electricity Consumption Projection to 2030 and 2050**
 - Naturally Evolving Scenario
 - Sectoral analysis on energy efficiency improvement
 - End-use electricity consumption scenarios 2030 – 2050
 - Total electricity consumption scenarios 2030 – 2050
 - Sectoral electricity consumption scenarios 2030 – 2050
 - Total installed capacity by 2030 and 2050

- **SG-TIMES Model Structure**
 - Singapore Reference Energy System
 - Model input analysis
 - Model output analysis

- **Concluding remarks**
Singapore Energy Landscape (Electricity Sector)

Unit: GWh

Electricity Consumption 2005 - 2010

Source: EMA 2010
Current Energy Efficiency Improvement Policies in Singapore

<table>
<thead>
<tr>
<th>Power Generation</th>
<th>Industry</th>
<th>Buildings</th>
<th>Transport</th>
<th>Households</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promote adoption of energy efficient technology and measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$10 Million EASe Scheme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Accelerated depreciation allowance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Investment allowance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Design for Efficiency scheme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grant for Energy Efficient Technologies</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Building regulations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Government take the lead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy Smart</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mandating Green Mark certified</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$20 million Green Mark Incentive Scheme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grant to upgrade Building Envelopes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residential building standards</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manage vehicle usage and traffic congestion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Improving and promoting the use of public transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fuel economy labeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green vehicle rebate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Promoting fuel-efficient driving habits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mandatory labeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Minimum energy performance standards</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electricity Vending System</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Electricity consumption tracking device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research & Development and Capability-building</td>
<td></td>
<td>Innovation for Environmental Sustainability Fund</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Green building R&D fund</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy service company accreditation scheme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Singapore Certified Energy Manager programme and Training Grant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raise awareness</td>
<td></td>
<td>Energy efficiency seminars and workshops</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy efficiency website</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Public awareness programme</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table of Contents

- **Introduction**
 - Singapore energy landscape
 - Current energy efficiency policies in Singapore

- **Electricity Consumption Projection to 2030 and 2050**
 - Naturally Evolving Scenario
 - Sectoral analysis on energy efficiency improvement
 - End-use electricity consumption scenarios 2030 – 2050
 - Total electricity consumption scenarios 2030 – 2050
 - Sectoral electricity consumption scenarios 2030 – 2050
 - Total installed capacity by 2030 and 2050

- **SG-TIMES Model Structure**
 - Singapore Reference Energy System
 - Model input analysis
 - Model output analysis

- Concluding remarks
Electricity Consumption Projection to 2030 and 2050 in the Naturally Evolving Scenario

- Electricity consumption projection based on the latest official estimation of 6.9 million population by 2030, followed by linear extrapolation to 2050 at about 8.7 million population
- Previous estimation was 5.9 million by 2030, and 6.7 million by 2050
Industry

• Current efficiency improvement policies
 – $10 Million dollars Energy Efficiency Improvement Assistance Scheme (EASe) by NEA and MEWR

• Relevant Industry Sectors and savings potential with the use of Best Available Technologies (BATs)(EJ/Yr, %)
 – Chemicals/Petrochemicals (1.0, 25%)
 – Cement (No data available)
 – Pulp and paper (0.3, 16%)
 – Wafer fab (N.A., 20%)

• Most relevant industrial technology systems and savings potential with the use of BATs (%)
 – Motor systems (20%)
Building

• Current efficiency improvement policies:
 – Green Mark (GM) Scheme
 – Energy Smart Building Labeling Scheme

• Prospect efficiency improvement policies:
 – Efficiency Improvements for Existing Stocks of Buildings

• GM Certification Criteria (% electricity reductions)
 – Platinum (30%)
 – GoldPLUS (25%)
 – Gold (15%)
 – Certified (10%)
Transport

- Current Mode of Transport
 - RTS Network
 - Bus
 - Taxi
 - Private Vehicles
 - Others

- Current transport policies (increase in electricity consumptions)
 - Doubling of RTS network by 2020 Electric Vehicle (EV) test bedding program
 - SMRT-BYD MOU on the distribution of BYD e6 taxi and eBus012 in Singapore

- Prospective transport policies (further increase in electricity consumptions)
 - Trolleybus
 - Tram
 - Bus Rapid Transit (BRT)
Household

• Current efficiency improvement policies
 – Minimum Energy Performance Standard (MEPS) for appliances sold in Singapore
 – Feasibility study on Electricity Vending System (EVS) scheme
 – 10% Energy Challenge to encourage household sector to reduce electricity consumption by 10%
Sectoral Analysis on Energy Efficiency Improvement (EEI)

Summary of Reductions from Naturally Evolving Scenario

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Industry</th>
<th>Building</th>
<th>Transport</th>
<th>Households</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAU Scenario</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>1.0%</td>
<td>3.0%</td>
<td>1738.05</td>
<td>-65.0%</td>
</tr>
<tr>
<td>2050</td>
<td>3.0%</td>
<td>6.0%</td>
<td>0.00</td>
<td>0.0%</td>
</tr>
<tr>
<td>Conservative Scenario</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>1.5%</td>
<td>6.0%</td>
<td>1739.60</td>
<td>-65.0%</td>
</tr>
<tr>
<td>2050</td>
<td>5.0%</td>
<td>7.5%</td>
<td>52.00</td>
<td>-1.8%</td>
</tr>
<tr>
<td>Optimistic Scenario</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>2.5%</td>
<td>12.0%</td>
<td>1806.93</td>
<td>-67.0%</td>
</tr>
<tr>
<td>2050</td>
<td>7.0%</td>
<td>15.0%</td>
<td>260.02</td>
<td>-9.1%</td>
</tr>
<tr>
<td>Technical Scenario</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>10.0%</td>
<td>20.0%</td>
<td>2502.61</td>
<td>-110.0%</td>
</tr>
<tr>
<td>2050</td>
<td>20.0%</td>
<td>30.0%</td>
<td>2996.18</td>
<td>-105.0%</td>
</tr>
</tbody>
</table>
End-use Electricity Consumption to 2050

End-Use Electricity Consumption by 2030 and 2050

- BAU Scenario
- Technical EEI Scenario
- Optimistic EEI Scenario
- Conservative EEI Scenario

Year

GWh

2010 2030 2050
Total Electricity Consumptions to 2050

Total Electricity Consumption by 2030 and 2050 (Including Energy Industry Own Use and Losses)

- BAU Scenario
- Technical EEI Scenario
- Optimistic EEI Scenario
- Conservative EEI Scenario

Year

GWh
Total Installed Capacity by 2030 and 2050 - at 50% Capacity Factor

<table>
<thead>
<tr>
<th>Year</th>
<th>Naturally Evolving Scenario</th>
<th>BAU Scenario</th>
<th>Conservative EEI Scenario</th>
<th>Optimistic EEI Scenario</th>
<th>Technical EEI Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>10.1</td>
<td>10.1</td>
<td>10.1</td>
<td>10.1</td>
<td>10.1</td>
</tr>
<tr>
<td>2030</td>
<td>15.3</td>
<td>15.5</td>
<td>15.3</td>
<td>14.9</td>
<td>14.1</td>
</tr>
<tr>
<td>2050</td>
<td>19.6</td>
<td>18.9</td>
<td>18.7</td>
<td>18.0</td>
<td>16.5</td>
</tr>
</tbody>
</table>

Singapore Total Installed Capacity at 2010 Published by the Energy Market Authority
Table of Contents

- Introduction
 - Singapore energy landscape
 - Current energy efficiency policies in Singapore
- Electricity Consumption Projection to 2030 and 2050
 - Naturally Evolving Scenario
 - Sectoral analysis on energy efficiency improvement
 - End-use electricity consumption scenarios 2030 – 2050
 - Total electricity consumption scenarios 2030 – 2050
 - Sectoral electricity consumption scenarios 2030 – 2050
 - Total installed capacity by 2030 and 2050
- SG-TIMES Model Structure
 - Singapore Reference Energy System
 - Model input analysis
 - Model output analysis
- Concluding remarks
TIMES Modeling Paradigm
SG-TIMES Reference Energy System

Primary Energy Supply
- **Imports (e.g.)**
 - Crude oil
 - Natural gas
 - Oil products
- **Exports (e.g.)**
 - Oil products
- **Renewables (e.g.)**
 - Solar
 - Wind
 - Hydro
 - Biomass

Process Technology
- **Power plants (e.g.)**
 - Coal plant
 - NGCC
 - Solar
 - Wind
 - CHP
 - Nuclear
- **Fuel processing plants (e.g.)**
 - Oil refineries
 - Hydrogen production

End-Use Technology
- **Industry (e.g.)**
 - Machinery
 - Steam boilers
- **Transport (e.g.)**
 - Gasoline car
 - Diesel truck
 - LPG buses
- **Household (e.g.)**
 - Refrigerators
 - Water heaters
- **Services (e.g.)**
 - Air conditioning
 - Light bulbs

Demand for Energy Service
- **Industry (e.g.)**
 - Automotive power
 - Process steam
- **Transport (e.g.)**
 - Person-km
 - kg-km
- **Household (e.g.)**
 - Refrigeration
 - Hot water
- **Services (e.g.)**
 - Cooling
 - Lighting
SG-TIMES Reference Energy System
- the Electricity Sector

Existing Technologies

- **Imported natural gas** → **Natural Gas Power Plant** → **Industry Sector**
- **Imported oil** → **Oil Power Plant**
- **Others** → **Other Power Plants** → **Building Sector**

New Technologies

- **Imported electricity** → **Renewable Power Plant (e.g. solar PV)** → **Transport Sector**
- **Renewables (e.g. solar)** → **Renewable Power Plant (e.g. solar PV)**
- **Imported nuclear fuel** → **Nuclear Power Plant** → **Household Sector**
- **Imported coal** → **Coal Power Plant**
Technical Details on the Model Structure

- **Time Slices**
 - Weekday/Saturday/Sunday -> Day/Nite

- **Sectoral Electricity Demand**
 - Current implementation: aggregated exogenous sectoral electricity demand based on offline analysis
 - *Future implementation: Energy service demand by commodity fraction*

- **User constraints**
 - Emission reduction target
 - Maximum share of coal + HFO power
 - Maximum share/installed capacity of nuclear power
 - Minimum penetration of renewables (solar PV and wind)

- **Calibration for the base year**
Model Output Analysis

- Electricity Sector BAU Scenario (No constraints)
 - Emissions by 2030 and 2050
- Emission reduction by 30% by 2030 and 50% by 2050 from the BAU Scenario
 - No constraints on the choice of technologies
 - Fixed range of combined Coal and HFO in the mix
 - Fixed range of combined Coal and HFO, and max Nuclear installed capacity in the mix
- Each model run was based on the four demand scenarios defined earlier
 - For illustration purposes, only the BAU and Technical EEI Scenarios will be presented
Electricity Sector BAU Scenario 1/3

- Emissions

Emissions in the BAU Scenario

- BAU Scenario
- Conservative EEI Scenario
- Optimistic EEI Scenario
- Technical Scenario
Electricity Sector BAU Scenario 2/3

- Installed Capacity

![Graph of Installed Capacity (DEM-BAU)](image)

![Graph of Installed Capacity (DEM-TEC)](image)
Electricity Sector BAU Scenario 3/3

Fuel mix

Electricity Generation by Fuel Group (BAU)

Electricity Generation by Fuel Group (Technical EEI)
Electricity Sector Emission Reduction Scenario 1/3

30% Reductions by 2030 and 50% reductions by 2050

Emissions Reduction from Electricity Sector BAU

- Blue line: BAU Scenario
- Red line: Conservative EEI Scenario
- Green line: Optimistic EEI Scenario
- Purple line: Technical Scenario

Mt-CO₂
Electricity Sector Emission Reduction Scenario 2/3

Installed Capacity under No System Constraints

![Installed Capacity (DEM-BAU-TAR)](chart1)

- Coal
- Natural Gas
- HFO
- Nuclear
- Waste

![Installed Capacity (DEM-TEC-TAR)](chart2)

- Coal
- Natural Gas
- HFO
- Nuclear
- Waste
Fuel Mix under No System Constraints

Electricity Generation by Fuel Group (DEM-BAU-TAR)

Electricity Generation by Fuel Group (DEM-TEC-TAR)
Installed Capacity under Fixed Range of Coal+HFO Share in the Fuel Mix

![Bar Chart: Installed Capacity (DEM-BAU-TAR-COAHFO)]

- Coal
- Natural Gas
- HFO
- Nuclear
- Waste

![Bar Chart: Installed Capacity (DEM-TEC-TAR-COAHFO)]

- Coal
- Natural Gas
- HFO
- Nuclear
- Waste
Electricity Sector Emission Reduction Scenario 2/2
- Fixed range of Coal+HFO mix (20% - 30%)

Fuel Mix under Fixed Range of Coal+HFO share
Installed capacity under fixed range of Coal+HFO share and max Nuclear capacity (1 GW) in the fuel mix
Fuel Mix under fixed range of Coal+HFO share, and max Nuclear capacity (1 GW)
Table of Contents

Introduction
 • Singapore energy landscape
 • Current energy efficiency policies in Singapore

Electricity Consumption Projection to 2030 and 2050
 • Naturally Evolving Scenario
 • Sectoral analysis on energy efficiency improvement
 • End-use electricity consumption scenarios 2030 – 2050
 • Total electricity consumption scenarios 2030 – 2050
 • Sectoral electricity consumption scenarios 2030 – 2050
 • Total installed capacity by 2030 and 2050

SG-TIMES Model Structure
 • Singapore Reference Energy System
 • Model input analysis
 • Model output analysis

Concluding remarks
Concluding Remarks

• As of now
 – We have constructed an SG-TIMES model for the electricity sector
 – We have calibrated the model for the base year
 – We have obtained model run results for further analysis

• Next
 – Expanding towards an economy wide TIMES model
 – Expanding towards a multi-regional model for the ASEAN region
Thank you