Analysis of distribution grid tariffs in the Norwegian energy system

Lisa Kvalbein & Pernille Seljom
Renewables energy systems, IFE
Motivation

• Increased electrification can lead to the need for costly upgrades in the distribution grid

• The structure of grid tariffs can be used as an incentive to end-user to increase their flexibility and lower the peak demand

• Grid tariffs can be used to represent the distribution grid costs in TIMES-models
The cost of electricity in distribution grid

- The distribution grid is the low voltage grid delivering electricity to end users in each region.
- The cost at this level is then the electricity bill the end user needs to pay.
- The bill consists of three parts in Norway:
 1. The electricity price / marginal cost of electricity form high voltage grid
 2. Taxes
 3. Grid tariff
Payment structure of grid tariff

- Grid tariff (directly translated from Norwegian: Grid rental) is the cost of investments and maintenance in the distribution grid, in addition to grid losses.
- Different structure for end-use in residential building and in commercial buildings.
- The line is often set at yearly demand (lower/higher than 100,000 kWh) or at the size of the main fuse (lower/higher than 125 A)
IFE-TIMES-Norway

- Continuously developed with The Norwegian Water Resources and Energy Directorate (NVE)
- Modell strength
 - Covers the Norwegian energy system
 - Detailed description of end users (residential and commercial buildings, industry and transport)
- Modell specifications
 - 5 regions: Nord Pool spot price area NO1-5
 - Modell horizon: 2018 – 2050
 - 96 time-slices: 4 seasons x representative day of 24 hour
 - Deterministic and stochastic version

The model is documented here: IFE-E-2020/004 (3.599Mb) (unit.no)
Structure of grid tariff

• 3 structures will be investigated
 • Base
 • Flat charge per energy unit consumed for all electricity services
 • Tariff structure of today
 • Flat energy charge per unit consumed for residential
 • Energy charge with seasonal variations and demand charge for commercial
 • Tariff structure of tomorrow
 • Energy charge depending on time of use for residential
 • Energy charge with seasonal variations and demand charge for commercial

• All charges is calculated so that if there is no change in demand, i.e. no response to the incentives, the grid tariff income will be the same.

• Assumed the cost level of grid tariffs remains the same throughout the model period
Modeling the grid tariff

- New transformation processes is defined to represent the energy meter
 - One for residential sector
 - One for each season for the commercial sector
Modeling the grid tariff

- Only efficiency is set on the energy meter for residential
- Efficiency, lifetime and availability factor is set for the energy meters for commercial
The cost structure is set in scenario-files to be able to do scenario analysis.

For the energy charge, FLO_COST is used.

For demand charge, it is set as an investment cost with 1 year lifetime.

Modeling the grid tariff

<table>
<thead>
<tr>
<th>TimeSlice</th>
<th>Attribute</th>
<th>Year</th>
<th>NO1</th>
<th>NO2</th>
<th>NO3</th>
<th>NO4</th>
<th>NO5</th>
<th>Pset_PN</th>
<th>Cset_CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>WI 20</td>
<td>FLO_COST</td>
<td>2018</td>
<td>236,6</td>
<td>124,8</td>
<td>185,0</td>
<td>201,0</td>
<td>177,8</td>
<td>TRANS_LV_RES</td>
<td>ELC-LV-RES</td>
</tr>
<tr>
<td>WI 21</td>
<td>FLO_COST</td>
<td>2018</td>
<td>236,6</td>
<td>124,8</td>
<td>185,0</td>
<td>201,0</td>
<td>177,8</td>
<td>TRANS_LV_RES</td>
<td>ELC-LV-RES</td>
</tr>
<tr>
<td>WI 22</td>
<td>FLO_COST</td>
<td>2018</td>
<td>236,6</td>
<td>124,8</td>
<td>185,0</td>
<td>201,0</td>
<td>177,8</td>
<td>TRANS_LV_RES</td>
<td>ELC-LV-RES</td>
</tr>
<tr>
<td>WI 23</td>
<td>FLO_COST</td>
<td>2018</td>
<td>124,5</td>
<td>65,6</td>
<td>185,0</td>
<td>105,7</td>
<td>93,5</td>
<td>TRANS_LV_RES</td>
<td>ELC-LV-RES</td>
</tr>
<tr>
<td>WI 24</td>
<td>FLO_COST</td>
<td>2018</td>
<td>124,5</td>
<td>65,6</td>
<td>185,0</td>
<td>105,7</td>
<td>93,5</td>
<td>TRANS_LV_RES</td>
<td>ELC-LV-RES</td>
</tr>
<tr>
<td>SP 01</td>
<td>FLO_COST</td>
<td>2018</td>
<td>224,6</td>
<td>118,5</td>
<td>185,0</td>
<td>190,8</td>
<td>168,8</td>
<td>TRANS_LV_RES</td>
<td>ELC-LV-RES</td>
</tr>
<tr>
<td>SP 02</td>
<td>FLO_COST</td>
<td>2018</td>
<td>224,6</td>
<td>118,5</td>
<td>185,0</td>
<td>190,8</td>
<td>168,8</td>
<td>TRANS_LV_RES</td>
<td>ELC-LV-RES</td>
</tr>
<tr>
<td>SP 03</td>
<td>FLO_COST</td>
<td>2018</td>
<td>224,6</td>
<td>118,5</td>
<td>185,0</td>
<td>190,8</td>
<td>168,8</td>
<td>TRANS_LV_RES</td>
<td>ELC-LV-RES</td>
</tr>
</tbody>
</table>

~TFM_DINS

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Year</th>
<th>NO1</th>
<th>NO2</th>
<th>NO3</th>
<th>NO4</th>
<th>NO5</th>
<th>Pset_PN</th>
</tr>
</thead>
<tbody>
<tr>
<td>INVCOST</td>
<td>2018</td>
<td>150,0</td>
<td>113,4</td>
<td>60,0</td>
<td>107,3</td>
<td>62,7</td>
<td>TRANS_LV_COM_WI</td>
</tr>
<tr>
<td>INVCOST</td>
<td>2018</td>
<td>42,0</td>
<td>88,2</td>
<td>45,0</td>
<td>53,0</td>
<td>56,8</td>
<td>TRANS_LV_COM_SP</td>
</tr>
<tr>
<td>INVCOST</td>
<td>2018</td>
<td>23,0</td>
<td>37,8</td>
<td>45,0</td>
<td>24,0</td>
<td>53,9</td>
<td>TRANS_LV_COM_SU</td>
</tr>
<tr>
<td>INVCOST</td>
<td>2018</td>
<td>42,0</td>
<td>63,0</td>
<td>50,0</td>
<td>60,0</td>
<td>59,8</td>
<td>TRANS_LV_COM_FA</td>
</tr>
</tbody>
</table>
Electricity Use in Commercial buildings in NO3

2020

Base

Today

Tomorrow

2050
Electricity Use in Residential buildings in NO1

- **2020**
 - **Base**
 - **Today**
 - **Tomorrow**

- **2050**
 - **EV charging**
 - **EL-specific**
 - **Heat**
Power generation from PV in GWh

<table>
<thead>
<tr>
<th></th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Commercial</td>
<td>Residential</td>
<td>Commercial</td>
<td>Residential</td>
</tr>
<tr>
<td>Base</td>
<td>60</td>
<td>46</td>
<td>50</td>
<td>37</td>
</tr>
<tr>
<td>Today</td>
<td>60</td>
<td>46</td>
<td>50</td>
<td>37</td>
</tr>
<tr>
<td>Tomorrow</td>
<td>60</td>
<td>46</td>
<td>50</td>
<td>37</td>
</tr>
</tbody>
</table>

- For PV in commercial buildings, no clear grid tariff structure is of favor
- For PV in residential buildings, a grid tariff structure of time of use is favorable
Electric battery

- Battery is only favorable in commercial buildings in NO3 for scenarios including power demand charges in model periods 2035-2045
- 3.55 MWh - corresponds to 0.5 % of yearly peak demand in the region
- NO3 is a region with small difference in demand charges between the seasons.
Marginal electricity cost in transmission grid (ELC-HV)

2020

2050

<table>
<thead>
<tr>
<th>Year</th>
<th>NOK/MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>450</td>
</tr>
<tr>
<td>Spring</td>
<td>475</td>
</tr>
<tr>
<td>Summer</td>
<td>500</td>
</tr>
<tr>
<td>Fall</td>
<td>475</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>NOK/MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>600</td>
</tr>
<tr>
<td>Spring</td>
<td>625</td>
</tr>
<tr>
<td>Summer</td>
<td>650</td>
</tr>
<tr>
<td>Fall</td>
<td>675</td>
</tr>
</tbody>
</table>
Marginal electricity cost in distribution grid (ELC-LV-*)

Residential

Commercial

2020

2050
Conclusion

- The modelling of three different grid tariff structures is demonstrated in IFE-TIMES-Norway

- The grid tariff structures
 - influences the investments in electric batteries and PV
 - influence peak demand marginally with current model assumptions

- Hypothesis: Grid tariff structure will have a greater impact with more end-use flexibility options (e.g. flexible EV charging), a stochastic modelling of short-term uncertainty and with an increase in grid tariff cost level

- What can we learn from your model team on modelling of the distribution grid and grid tariffs?
Thank you!

lisa.kvalbein@ife.no

Master of Science