Impacts of monetary incentives and non-monetary policy measures on transport decarbonization in Ireland

Vahid Aryanpur
PhD student | Energy Policy & Modelling Group, MaREI Center for Energy, Climate and Marine | School of Engineering, UCC | vahid.aryanpur@ucc.ie | IEA ETSAP Workshop | June 17, 2021
Content

- Background
- Purpose of the study
- Methodology and model specifications
- Scenario assumptions and Results
- Conclusions
Transport Sector in Ireland (SEAI, 2020)
- Transport is the largest energy-consuming sector in Ireland (42% of total final energy consumption in 2018)
- This sector significantly relies on fossil fuels and is responsible for 40% of energy-related CO2 emissions
- Private cars are responsible for the largest share of transport emissions at 40%

Key solutions (Climate Action Plan, 2019)
- Private cars: 840,000 EVs on the road by 2030
- Remote and home-working
- Modal shift to public transport
- Renewable biofuel
- Zero carbon public transport fleets

Ambitious targets (Climate Action Bill, 2021)
- Target 2030: 51% reduction compared to 2018
- Target 2050: Carbon-neutral transport

Approach (Joint Committee on Environment & Climate Action, 2021)
- avoid-shift-improve approach into the transport and mobility infrastructure planning
Focus and Purpose

▪ Focus
 ✓ Sector: Private cars in Ireland
 ✓ Target: 51% reduction in CO₂ emissions
 ✓ Year: 2030

▪ Research Questions
 ✓ How different measures impacts on CO₂ emissions from private cars
 ✓ Solutions to reach the mitigation target in 2030
 ✓ The appropriate time to remove the purchase grant while meeting EV adoption target
How policy measures impact decarbonization pathways in transport sector?

Supply-side Modules
- **Resources and Potentials**
 - Fossil fuel: Oil, Gas, Coal
 - Renewable: Wind, Hydro, Solar, Biomass
- **Power**
 - Fossil-Fired
 - Biogas-Fired
 - CCS (Gas/Biomass)
 - Renewable
- **Fuel Supply**
 - Oil products
 - NG/Biogas
 - Liquid Biofuels
 - Hydrogen
- **Distribution**
 - Electricity
 - Oil products
 - Biofuels
 - Natural gas
- **Imports**
 - Electricity
 - Oil products
 - Biofuels
 - Natural gas

Demand-side Modules
- **End-use Technologies**
 - Residential
 - Appliances
 - Boiler
 - Heat pumps
 - Other sectors
 - Industry
 - Service
 - Agriculture
- **Energy Service Demands**
 - Residential & Service
 - Space heating
 - Hot water
 - Electricity
 - Others
 - Industrial
 - Chemicals
 - Machinery
 - Metals
 - Food & beverage
 - Others

Transport Technologies
- **Inland Freight**
 - Light Goods Trucks
 - ICEs, HEVs
 - FCVs
 - PHEVs, BEVS
 - Medium & Heavy Goods Trucks
 - ICEs & HEVs
 - FCVs
 - BEVs
 - Trains
 - ICEs, BEVs, FCVs
- **Inland Passenger**
 - Light-Duty Vehicles
 - Cars & Taxis
 - ICEs & HEVs
 - FCVs
 - BEVs, PHEVs
 - 2-Wheelers
 - ICEs, BEVs
 - Heavy-Duty Vehicles
 - Trains
 - ICEs (Train)
 - BEVs (Light rail)
 - BEVs (Train)
 - Buses
 - ICEs
 - FCVs
 - BEVs
- **Other transport**
 - Tourism, Navigation, Aviation, Unspecified

Main Scenarios
- BAU Scenario
- Low Demand Scenario

Policy Measures
- Biofuel obligation
- Monetary incentives
- Banning ICEs

Transport Demand
- Passenger (pkm)
 - Short-range (<5km)
 - Medium-range (5-30km)
 - Long-range (>30km)
- Freight (ton.km)
- Others (PJ)

Carbon Constraint (kt CO₂)

Method
- Energy flow
- Scenario assumption
- CO₂ flow
- End-use Demand
- Hurdle rates
Model Specifications

❑ General
 ▪ Model horizon: 2018 – 2050
 ▪ Periods: 18 Periods (yearly/multi-years)
 ▪ Social discount rate: 4%
 ▪ Flexible Spatio-temporal resolution: 26 sub-regions, 40 time-slices
 ▪ Model details: >60 Attributes; >150 User Constraints; >300 Commodities; >2000 Technologies

❑ Transport
 ▪ Region specific characteristics: vehicle fleet, infrastructure, fuel consumption, mileage, occupancy rate, and load factor
 ▪ Historic scrappage profiles for existing vehicles
 ▪ Retirement profile for new vehicles
Vehicle Purchase Decision

- **Hurdle rates** are used to capture the consumer behaviour when purchasing a transport technology.
- Consumer-specific Hurdle Rate: TAM\(^1\), PRIMES\(^2\)

Relationship between individual discount rates and income in PRIMES

<table>
<thead>
<tr>
<th>Income class</th>
<th>Discount rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-income (39%)</td>
<td>30.8%</td>
</tr>
<tr>
<td>Medium-income (17-27%)</td>
<td>49.6%</td>
</tr>
<tr>
<td>High-income (5-9%)</td>
<td>19.6%</td>
</tr>
</tbody>
</table>

Sub-regions in TIM

Household median gross income by county:

- €66,203
- €32,259

Individual discount rates in TIM (region-specific discount rate)

<table>
<thead>
<tr>
<th>Income class</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-income</td>
<td>30.8%</td>
</tr>
<tr>
<td>Medium-income</td>
<td>49.6%</td>
</tr>
<tr>
<td>High-income</td>
<td>19.6%</td>
</tr>
</tbody>
</table>

BAU Scenario

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Demand</th>
<th>Modal share</th>
<th>Biofuel</th>
<th>Policy measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Business as usual (BAU)</td>
<td>Increase</td>
<td>Fixed</td>
<td>No obligation</td>
<td>No action</td>
</tr>
<tr>
<td>1.1. Modal shift</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2. Biofuel Obligation Scheme (BOS1)</td>
<td></td>
<td></td>
<td>B12 and E10</td>
<td></td>
</tr>
<tr>
<td>1.3. Biofuel Obligation Scheme (BOS2)</td>
<td></td>
<td></td>
<td>B20 and E10</td>
<td></td>
</tr>
<tr>
<td>1.4. Occupancy rate</td>
<td></td>
<td></td>
<td></td>
<td>Occupancy rate (5-50%)</td>
</tr>
<tr>
<td>1.5. Monetary incentives</td>
<td></td>
<td></td>
<td></td>
<td>Grants & tax relief</td>
</tr>
</tbody>
</table>

Region-specific hurdle rates are incorporated in all scenarios
Low Demand Scenario

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>Demand*</th>
<th>Modal share</th>
<th>Biofuel</th>
<th>Policy measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Low Energy Demand (LED)</td>
<td>Decreasing</td>
<td>Fixed</td>
<td>No obligation</td>
<td>No action</td>
</tr>
<tr>
<td>2.1. Modal shift</td>
<td></td>
<td></td>
<td></td>
<td>Modal shift</td>
</tr>
<tr>
<td>2.2. Biofuel Obligation Scheme (BOS1)</td>
<td></td>
<td></td>
<td>B12 and E10</td>
<td></td>
</tr>
<tr>
<td>2.3. Biofuel Obligation Scheme (BOS2)</td>
<td></td>
<td></td>
<td>B20 and E10</td>
<td></td>
</tr>
<tr>
<td>2.4. Occupancy rate</td>
<td></td>
<td></td>
<td></td>
<td>Occupancy rate (5-50%)</td>
</tr>
<tr>
<td>2.5. Monetary incentives</td>
<td></td>
<td></td>
<td></td>
<td>Grants & tax relief</td>
</tr>
</tbody>
</table>

* pkms/capita will decrease from 17,000 in 2018 to 12,000 in 2050
Results: CO₂ emissions in BAU Scenario (Mt)

<table>
<thead>
<tr>
<th></th>
<th>Actual 2018</th>
<th>Growth in activity</th>
<th>LDI improvements</th>
<th>Biofuel Obligation</th>
<th>Radical Biofuel Obligation</th>
<th>Active modes</th>
<th>Emission level 2030</th>
<th>Target 2030</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6.07</td>
<td>1.17</td>
<td>-0.88</td>
<td>-0.64</td>
<td>-0.24</td>
<td>-0.41</td>
<td>5.05</td>
<td>2.97</td>
</tr>
</tbody>
</table>

Sensitivity Analysis

✓ Monetary and non-monetary measures

Solutions to fill the gap:

✓ EV adoption: 1.1 million EVs are required. Monetary incentives (Purchase grants + VRT Relief) should be kept until the end of year 2027.

✓ Occupancy rate: Increasing the average occupancy rate by 35% (from 1.49 to at least 2.0)

✓ Hybrid solution: Increasing the average Occupancy Rate (OR) by 10% and 700k EVs.
Results: CO₂ emissions in LED Scenario (Mt)

Sensitivity Analysis
✓ Monetary and non-monetary measures

Solutions to fill the gap:
✓ EV adoption: 600k EVs are required, Monetary incentives (Purchase grants+VRT Relief) should be kept until the middle of year 2023.

✓ Occupancy rate: Increasing the average occupancy rate by 25% (from 1.49 to at least 1.86)

✓ Hybrid solution: Increasing the average occupancy rate by 15% and 450k EVs.
Results: Monetary incentives in BAU scenario

<table>
<thead>
<tr>
<th>Vehicle type</th>
<th>Private cars</th>
<th>Vans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BEV</td>
<td>PHEV</td>
</tr>
<tr>
<td>Purchase grant</td>
<td>€5000</td>
<td>€2500</td>
</tr>
<tr>
<td>VRT relief</td>
<td>€5000</td>
<td>€2500</td>
</tr>
</tbody>
</table>

Monetary Incentive Removal (MIR)

VRT relief for BEVs is in place until the end of 2021 and for PHEVs until end of 2020

EV Cars (1000 Vehicle)

2030 target: 840k EVs

CO2 emissions (MT)

2030 target: 2.97 MT CO₂

Purchase price proportion in 2024 (EV/ICE): 1.41
Conclusions

Impact of measures on decarbonization

- Individual measures (even a radical action) cannot meet the ambitious targets

- Avoid (reduce the travel need) can deliver far better outcome than the adoption of zero-carbon vehicles

- To achieve the mitigation target in BAU:
 - 700k BEVs, combined with radical increase in OR are required
 - Monetary incentives should be kept until 2027

- To achieve the mitigation target in LED:
 - LED scenario: 450k BEVs, combined with moderate increase in OR are required
 - Monetary incentives can be removed from 2023
Insights and future works

Modelling insights (spatially-resolved model)

- Better capture region-specific characteristics
- Higher spatial resolution can be used as a mean to incorporate consumer heterogeneity
- Solution time for a multi-region model is ~30 mins and for a single-region is ~6 mins on a laptop

Future works

- Region-specific policy measures (such as banning single passenger cars in urban areas, phase out ICEs from some regions)
- More targeted monetary incentives (allocating purchase grants to low-income vehicle buyers/regions)
- Incorporation of disposable income instead of median household income
Further details and results in: https://tim-review1.netlify.app/about
In terms of BEV adoption, single-region model differs from multi-region (30 percent less than multi-region case).

Same demand, but an average data is used for national-scale hurdle rates.

Average national (homogeneous consumers) hurdle rate makes BEVs (technologies with higher upfront cost) less competitive than the other options.