Use of LCA-data in TIMES-Norway

Eva Rosenberg
Kari Aamodt Espegren

ETSAP Workshop on Sustainability performance of the energy systems
CIEMAT, Madrid, 29-30 May 2017
Motivation

• Optimize CO₂ footprint
• Extend the analyses beyond energy and CO₂
• Ensure the actual sustainability of new and conventional renewables
• Focus on research areas of IFE (battery, H2, wind, PV)

Objective:
• Develop a methodology coupling energy system modelling and LCA / LCC

Approaches:
• LCA of a future energy system
• Optimizing of an energy system, including LCA parameters
The Norwegian energy system 2015
Use of results from energy systems analysis in LCA is proved to be valuable

Examples, recent work:

IEA ETP2010: Global electricity production by energy source in the Baseline and BLUE Map scenarios
Impact indicators, resource demand and deployment characteristics of the investigated power generation technologies under the IEA BLUE Map scenario

- IEA BLUE Map compared to the IEA Baseline scenario
- a doubling of electricity generation from 2007 to 2050
- reduction of pollution-related environmental impacts
- a substantial increase of material consumption, specially copper

What are the benefits of including LCA-data in a TIMES-model?

- Including the life-cycle perspective on energy system modelling
 - Energy used outside the model region can be included
 - Emissions from production of technologies used in the model can be included

- Adding new functionality
 - Including LCA impact categories
 - Including other emissions than CO₂

- Optimization with limits of added parameters
 - GHG limit including a cradle-to-gate or cradle-to-grave perspective (GWP)
 - Other parameters as NOx, resources, human health…..
Tools

- TIMES models
 - TIMES-Norway
 - TIMES-North-Europe
 - TIMES-Oslo
 - ETSAP-TIAM

- LCA
 - Software: openLCA
 - Databases:
 - Ecoinvent
 - NEEDS
 - ELCD
TIMES-Norway

- Norway is divided into five regions and Sweden in 4 regions (electricity spot markets)
- 52 weeks/year, 5 time slices/week, a total of 260 time slices/year
- Time horizon 2015-2050
- Demand categories in each region:
 - Agriculture (3)
 - Commercial (21)
 - Industry (33 -36)
 - Residential (10)
 - Transport (8)
- Exchange of electricity between regions and neighbour countries
- Can be linked with a power market model (EMPS)
Use of transport fuels in REF and 2DS
One region of Norway

- Same demand for transport in both scenarios
- Electrification and bio fuels
Approaches
Use of LCA data in energy system models

1. Adding LCA-indicators to TIMES-Norway
 - The SuReTool project (EEA/NILS Science and Sustainability programme)

2. Adding CED (Cumulative Energy Demand) of electricity production technologies to TIMES-Norway

3. Adding GWP of technologies to TIMES-Norway
SuReTool: LCA-indicators in TIMES-Norway

LCA indicators added to TIMES-Norway as emission factors (FLO_EMIS)

I. Created new commodities to name these 4 indicators
 1. CLICH Climate Change, CC
 2. ECOSYS Ecosystems Quality, EQ
 3. HUHEA Human Health, HH
 4. RESOU Resources

II. Allocated FLO_EMIS for those commodities in each of the new power technologies in TIMES-Norway
 • 6 hydro power technologies
 • 140 wind onshore technologies
 • 3 wind offshore technologies
 • 2 gas power technologies (NGCC)
 • 1 CHP technologies
 • Trade processes
Results from TIMES-Norway
Norwegian electricity production 2010-2050

[Graph showing Norwegian electricity production from 2010 to 2050 with different sources including existing and new hydro, wind turbines, and increased capacity hydro.]
Result from TIMES-Norway
Impact of LCA-indicators

- Similar impact of all LCA-indicators (human health, climate change, ecosystems quality and resources)
SuReTool: Experiences

- Impacts of total operating phase in TIMES-Norway – is this correct?
 - Often impacts are related to construction, not operation

- What new goal/optimization parameter should be used?
 - It is difficult to establish a goal in the long-term

- What technologies should include LCA burdens; the new ones only?

- Importance of system boundaries
 - Electricity import/export
Adding Cumulative Energy Demand from LCA into TIMES-Norway

- Brief literature survey of some interesting technologies in the Norwegian energy system:
 - PV multi-Si systems
 - 1.1 - 7 years energy payback time (EPBT)
 - 30 years lifetime
 - CED 4-23% of energy production
 - Offshore wind power
 - 1.6 - 2.7 years EPBT
 - 20 years lifetime
 - CED 8-13% of energy production
 - H2 fueling station, electrolyser, wind power (one source, stand-alone)
 - CED 34.4 MJ / kg H2
 - CED 24% fueling station /kWh fuel
CED reflections

• High CED variation/uncertainty – what data should be used?
 • Technology origin often varying and unknown
 • Use local parameters for irradiance, wind full load hours etc.

• The impact of CED is expected to be reduced in future

• The uncertainty of the production technologies are large – sometimes overshadowing the CED value

• Energy used outside Norway interferes with the Norwegian energy balance – difficult to handle in a regional model
Adding Climate Change impacts (GWP)

Literature review:

• PV, multi-Si panels, roof or ground mounted
 • GWP 10-136 g CO₂-eqv./kWh (reviews)
 • Avoided CO₂-emissions 4-800 g CO₂-eqv./kWh (reviews)
 • Example: 100 g CO₂/kWh = 1 mill. ton CO₂/TWh
 • 1TWh PV = 2 % of total Norwegian CO₂ emissions

• Battery for BEV (one source)
 • «Leaf»-size car without battery 4-4.5 ton CO₂/car
 • 26.6 kWh battery («Leaf»-size) 4.6 ton CO₂ (170 g/kWh)
 • 2.6 million batteries = 0.8 mill ton CO₂/year

• H₂ fueling station, electrolyzer, wind power
 • 1.92 kg CO₂/ kg H₂ (one source)
 • If all road freight transport use H₂, GWP of construction add 0.4 mill ton CO₂
GWP reflections

• High variation/uncertainty – what data should be used?
 • Technology origin often varying and unknown
 • Use local parameters for irradiation, wind full load hours etc.

• The impact expected to be reduced in future

• Which electricity mix should be used?

• May give additional information on national climate studies by taking into consideration emission from the construction phase
 • But national climate agreements do not include emissions from construction or decommissioning
Conclusions

- It is difficult to find an optimization parameter for the LCA-parameters
- Problem with national energy balances in a life cycle perspective
- TIMES-Norway
 - It is not so interesting to include LCA-indicators of renewable energy technologies due to the high share of hydro power in the present system
 - Transport technologies will be further analyzed
- We will continue to learn and test how we can use LCA to enrich our energy system analysis
- NEEDS?