

The MACRO Decomposition Algorithm and Other Recent Enhancements in TIMES (v3.3.1 — v3.4.0)

Antti Lehtilä, VTT Socrates Kypreos (PSI), George Giannakidis (ETSAP / CRES) December 10, 2012

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Presentation Outline

- The MACRO Decomposition Algorithm
 - Overview
 - Calibration algorithm
 - Policy evaluation algorithm
 - Validation
 - Performance
 - Usage notes
 - · Open issues & further work
- Grid Modeling Features in TIMES
 - Overview
 - Power flow equations
 - Simple examples
- Other Minor Enhancements in TIMES v3.3.1–3.4.0
- Documentation Status

The MACRO Decomposition Algorithm

- TIMES includes a macroeconomic module MACRO:
 - MACRO maximizes an inter-temporal utility function for a single representative producer-consumer agent
 - Can be very useful for estimating the macro-economic implications of environmental policies, e.g. climate policies
- Earlier implementation has notable shortcomings:
 - Well-justified only for single-region models: Does not consider inter-temporal trade imbalances or income disparities
 - Formulation as big NLP model leads to poor performance of solvers compared to LP models already in the single-region case
 - Moreover, also the Baseline calibration of DDF factors and labor growth rates is both cumbersome and time-consuming
- Decomposition method offers the solution
 - Similar approach successfully employed in MESSAGE-MACRO

3

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

TIMES-MSA — Calibration

- Step 1: Solve the Baseline TIMES-LP model:
 - 1a: MIN ObjZ = SUM{ (r,t), Coef_PVT(r,t) * Var_EC(r,t) }
 - 1b: Calculate Quadratic Supply Functions for the demands
- Step 2: Solve the stand-alone MACRO model (MSA):
 - · 2a: Calculate new DDF factors and labor growth rates
 - 2b: MAX UTIL = SUM{ (r,t), TM_DFACT(r,t) * LOG(Var_Y(r,t)-Var_INV(r,t,)-Var_EC(r,t)) }
 - 2c: If max. error in demands and GDP are above tolerance, goto 2a
- Step 3: If multi-regional, iterate MSA with Negishi weights
 - 3a: Calculate initial Negishi weights NWT(r)
 - 3b: MAX UTIL = SUM{ (r,t), NWT(r) * TM_DFACT(r,t) * LOG(Var_Y(r,t)-Var_INV(r,t,)-Var_EC(r,t)-Var_NMR(r,t)) }
 - 3c: Calculate new NWT(r), and if difference is above tolerance, update DDF factors and go back to Step 3b
- Step 4: Write final calibration parameters into a DD file

ı

TIMES-MSA — Policy Evaluation

- Step 1: Solve the Policy Scenario TIMES-LP model:
 - 1a: MIN ObjZ = SUM{ (r,t), Coef_PVT(r,t) * Var_EC(r,t) }
 - 1b: Calculate Quadratic Supply Functions (QSF) for the demands
 - 1c: Read the calibrated DDF factors and labor growths from DD file
- Step 2: Solve MSA (with Negishi loop if multi-regional):
 - 2a: Calculate initial Negishi weights NWT(r)
 - 2b: MAX UTIL = SUM{ (r,t), NWT(r) * TM_DFACT(r,t) * LOG(Var_Y(r,t)-Var_INV(r,t,)-Var_EC(r,t)-Var_NMR(r,t)) }
 - 2c: Calculate new NWT(r), and if change is above tolerance, goto 2b
 - 2d: If error in demand levels is below tolerance, proceed to Step 3
 - 2e: Update the LP demands according to MSA results and resolve:
 MIN ObjZ = SUM{ (r,t), Coef_PVT(r,t) * Var_EC(r,t) }
 - 2f: Calculate new QSF for MSA and go back to Step 2b
- Step 3: Calculate all model results and finish

5

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

TIMES-MSA — Validation

- Good convergence to the same solution as in TIMES-MACRO
- BUT: Systematic differences could only be eliminated after harmonizing the discount factors applied in TIMES-LP and Macro
 - Additional discount rate updating was added into the algorithm

Calibration error and GDP differences for the single-region TIAM-USA model

TIMES-MSA — Performance

- Tests carried out with subsets of the ETSAP-TIAM model:
 - Single-region model for the USA (run also with TIMES-MACRO)
 - Six-region model (EEU + WEU + USA + AFR + CHI + MEA)
 - Ten-region model: (EEU+WEU+USA+JPN+AFR+CHI+CSA+IND+MEA+ODA)
- Test results indicate that TIMES-MSA is perhaps even 100+ times faster than TIMES-MACRO
- Full TIAM not yet tested because of problems e.g. with FSU

Run time	TIMES-MSA		TIMES-MACRO	
(minutes)	Calibration	Policy run	Calibration	Policy run
TIAM-USA	<1	2	~250	~200
TIAM-6R	4	28	NA	NA
TIAM-10R	7	58	NA	NA

7

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

TIMES-MSA — Usage Notes

- New control switches for activating TIMES-MSA
 - \$SET MACRO CSA activate MSA in calibration mode
 - \$SET MACRO MSA activate MSA in policy run mode
 - \$SET OBJANN YES activate discount factor updating (optional)
- The following input parameters are mandatory for MSA:
 - TM_GDP0(r) GDP in base year (currency units)
 - TM_GR(r,t) GDP growth projection (per cent / a)
- New result attribute available in both MSA/TIMES-MACRO:
 - TM_RESULT(item,reg,year), [Var_Macro in VEDA-BE]; where item=
 - GDP-REF Baseline GDP projection
 - GDP-ACT Actualized GDP in scenario
 - PRD-Y Production
 - CON-C Consumption
 - INV-I Investments
 - ESCOST Annual energy system costs
 - GDPLOS GDP loss in per cent (policy runs)

TIMES-MSA — Open Issues & Further Work

- Which period-wise discount factors should be applied?
 - Should one use the energy system discount factors in TIMES-LP, or harmonize them with the effective "utility discount factors" of MSA?
 - Full convergence to the TIMES-MACRO solution may only be obtained with consistent discount factors, but is that necessary?
 - Handling of the last period has been changed for now (partly due to similar reasons); see the MACRO documentation for details
- Should energy trade balances be explicitly modeled in MSA?
- Should income elasticity of demands be incorporated?
 - The MARKAL income elasticity option is currently not available
- How to eliminate problems arising from poorly behaving models (e.g. the FSU region of ETSAP-TIAM)?
- Would a more elaborated MACRO module be desired?

9

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Grid Modeling in TIMES

- TIMES electricity grids may consist of both inter-regional and intra-regional transmission lines
- Grid lines are modeled by bi-directional trade processes
- Grid nodes are represented by TIMES commodities (node balance = commodity balance)
- Transmission losses can be easily defined for each line
- Generation and demands may be either explicitly modeled for each grid node, or may be allocated in a semi-automatic way to the nodes
 - With the automated allocation facility, detailed grid analysis can be implemented to any existing model as an add-on
- Optional DC linear power flow analysis feature available

Grid Modeling — Power Flow Equations

- Standard linear DC power flow equations now supported
- Simulate real power flows in the transmission system
- Can be useful for analyzing grid bottlenecks and integration of large amounts of variable generation into the system
- Requires only one new input parameter: PRC REACT(r,y,p)
 - Specifies the reactance of the transmission line p
 - Units don't matter, only the relative value among all lines
 - Defines also the grid topology for the purposes of the automated facility for allocating generation and loads
 - If PRC_REACT(r,y,p)=0, the line is included in the grid but excluded from the power flow equations
- Has been successfully tested with small grid models

11

/TT TECHNICAL RESEARCH CENTRE OF FINLAND

Grid Modeling — Simple Examples

New South Wales Grid

FR-DE-CH-IT Grid (PET model extract)

Other Minor Enhancements in TIMES

- Semi-continuous investment variables now supported
 - New capacity variables VAR_NCAP required to be either VAR_NCAP(rtp) = 0 or VAR_NCAP(rtp) ≥ NCAP SEMI(rtp)
 - Available in the DSC extension
- New process type for generalized timeslice storage
 - For example, generalized DAYNITE level storage can store energy also between seasons or even between periods
- FLO_COST and FLO_DELIV can now be specified for storage (FLO_COST applied to charging and FLO_DELIV to discharge)
- Uncertain parameter S_FLO_FUNC can now be applied also to FLO_EMIS / IRE_FLOSUM transformation of IRE processes
 - Syntax: S_FLO_FUNC(reg,y,prc,com,com,stage,sow)
- Fixing first periods is now supported in a flexible way under Time-stepped mode (fixed periods may vary between regions)

13

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Documentation Status

- Updated document on the TIMES Control Switches
- Pending: Documentation of TIMES-MSA
- Pending: Documentation of grid modeling features
- Base documentation and supplementary notes cover features up to TIMES v3.1.x:
 - Documentation for the TIMES Model (Parts I-III)
 - Document on TIMES enhancements in v2.1 v3.1
 - User Notes on TIMES extensions
- All components of the TIMES documentation available for download at the ETSAP website:

www.iea-etsap.org