New developments related to the World TIMES model: EMF-22 Project & Climate Module

Maryse Labriet, Richard Loulou
Group for Research in Decision Analysis (GERAD)
Montreal, Canada

Energy Technology Systems Analysis Programme
Semi-Annual Workshop
Kyoto, July 4, 2005

Outline

1. Progress made in the EMF-22 project
 • Stanford meeting, May 25-27, 2005
 • Progress accomplished so far in TIMES database and structure
 • Current and next work

2. The new “Climate Module” of TIMES
 • General equations
 • Implementation
 • Some results
Introduction

Starting
Collaboration started in 2004

EMF-22
Climate Policy Scenarios for Stabilization and Transition
⇒ Focus on comprehensive analyses of long-run climate stabilization policies under uncertainty as well as intermediate-term transition policies (2010-2040)

1st Meeting
Brussels, November 2004
- Define the work and the scenarios

2nd Meeting
Stanford, May 2005
- Consolidate the original objectives
- Confirm the Study Groups (SG)
- Outline a calendar for future activities

Four Study Groups

Hedging Transition Policies
Black Carbon
Land-Use

Rules of participation
Flexibility and freedom each participant has in choosing:
- membership in one or more SG’s
- among the several experiments proposed in each SG

No rigid base cases
⇒ each modeler ~ free to define its own reference case
⇒ alternate policy scenarios run by each modeler are relative to that modeler’s reference case(s)
Hedging SG

Objective
Evaluate hedging policies, i.e. “good” or “optimal” decisions taken while uncertainty prevails

Uncertain parameter
Climate sensitivity
Discrete probability distribution function:
L= 1.5°C (0.30), 2.5°C (0.40), 5°C (0.15), 8°C (0.15)

Three experiments
A: Full resolution of uncertainty in 2050
B: Partial resolution in 2050, full resolution in 2070
C: Partial resolution in 2030, full resolution in 2050

Non-CO₂
CO₂ concentration replaced by the concentration of all GHG gases expressed in CO₂-eq ⇒ avoids the modeling of life cycle of non-CO₂ GHGs

Transition Policies SG

Objective
Simulate a relatively large range of policies that could be applied in the 2010-2040 period

Target-Driven Policies
A reduction target (not yet defined) is specified in 2040 under a cap-and-trade regime, and the response of the model is analyzed, thus revealing sectoral and regional policies

Policy-Driven Policies
A set of policies* are specified and the effects on climate and costs are analyzed

*Eg: - sectoral caps and trade
- taxes and/or subsidies on commodities and/or technologies
- technology standards (car efficiency, building shell efficiency)
- portfolio standards (emission per kWh of electricity produced)
- impact of non-GHG policies on climate (local pollution limits, development oriented policies)
Land Use SG

Objective
Provide a detailed inventory and projections to 2050 of land uses and emissions as well as quantitative information on mitigation options

Approach similar to EMF-21, which provided non-CO₂ emissions and marginal cost curves for abating the emissions

Black and Organic Carbon SG

Objective
Study the effects of including black and organic carbon* in a cap-and-trade regime

* Produced during combustion of fossil fuels (RPP, coal) and biomass, warming (BC) / cooling (OC) potential

Progress accomplished so far

Transition of the database from the world multi-regional MARKAL to TIMES and testing the model

• Same structure
• New assumptions about input data: long-term energy service demands (based on POP and GDP projections), resources availability, specific energy policies & behaviors, future technologies (cost, efficiency), etc.
Reference Energy System (RES)

Fossil Fuel Reserves (oil, coal, gas)

Extraction

Biomass Potential

Renewable Potential

Nuclear

Carbon capture

Secondary Transformation

Electricity

C cogeneration

Heat

BIO**

WIN SOL (DEO TOL)

PTO

Fuels

End Use

HET

Trade

OPEC/ NON-OPEC regrouping

OLI***

GAS***

COA***

Electricity

Fuels

ELC***

Electricity

Cogeneration

Heat

BIO***

Nuclear

TOL

SNK

TOTCO2 (forests)

SNK

Trade

Climate module

CO2CONCatm,up,lo

RADFORCING

TEMPatm,lo

Progress accomplished so far

International trade

- Endogenous trading of natural gas, LNG, crude oil (and CO₂ permits) ⇒ endogenous quantities & prices
- Particularly challenging task for crude oil: control of oil annual production quantities by OPEC, so as to approximate the oil production decisions of the cartel ⇒ oil price from 3.8 to 8.7 $/GJ (22 to 55 $/bbl)

Climate module

- Integrated in the structure of the model
- Scenarios with bounded CO₂ concentration tested

Data handling tools (VEDA_FE, VEDA_BE): upgraded
Sequestration

1. EMF-22

Capture
- Power plants (pre- or post-combustion)
- Hydrogen plants
- Industry not incl

+50% elc price

Transportation
- From 3 to 55$/tC

Geological, ocean & advanced storage
- CUM=4157 GtC (1)
- From 4 to 12$/tC
- Depleted oil/gas fields
- Coal beds
- Saline aquifers (cheapest)
- Deep ocean
- + Mineralization (expensive)

Terrestrial sinks
- CUM=163 GtC (2)
- From 20 to 70$/tC
- Forestry, soils

(1) Calibrated to literature (Kauppi and Sedjo, 2001; Herzog et al., 1997)

(2) In the range proposed by IPCC, but very uncertain

Barriers:
- Needs for more R&D about CCS technologies, reservoirs and biological processes, risk of leakage, permanence

Available Resources

1. EMF-22

CRUDE OIL (21)

<table>
<thead>
<tr>
<th></th>
<th>TIMES</th>
<th>IPCC</th>
<th>MEAN</th>
<th>F5S</th>
<th>F50</th>
<th>F5</th>
<th>MERGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>168298</td>
<td>212193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil sands (3)</td>
<td>33061</td>
<td>36020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bitumen (very heavy) (6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil shales (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NATURAL GAS (11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional</td>
<td>19897</td>
<td>17179</td>
<td>14395</td>
<td>9001</td>
<td>13111</td>
<td>20258</td>
<td>10086</td>
</tr>
<tr>
<td>Not conventional (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL OIL (21)</td>
<td>42315</td>
<td>35576</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional</td>
<td>15202</td>
<td>13562</td>
<td>13562</td>
<td>9954</td>
<td>14454</td>
<td>21900</td>
<td>8928</td>
</tr>
<tr>
<td>Unconventional</td>
<td>27113</td>
<td>22014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

US geological survey

<table>
<thead>
<tr>
<th></th>
<th>TIMES</th>
<th>IPCC</th>
<th>MEAN</th>
<th>F5S</th>
<th>F50</th>
<th>F5</th>
<th>MERGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL COAL (EJ)</td>
<td>168298</td>
<td>212193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional</td>
<td>19897</td>
<td>17179</td>
<td>14395</td>
<td>9001</td>
<td>13111</td>
<td>20258</td>
<td>10086</td>
</tr>
<tr>
<td>Unconventional</td>
<td>42315</td>
<td>35576</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Different types of reserves

- Located reserves (known & recoverable)
- Reserves growth (to be developed)
- New discovery (probabilistic)
- Up to 3 steps for each type of reserves (cost)

Potential

- Gas and coal reserves of TIMES are consistent with other sources
- Oil reserves of TIMES are too high (non-conventional)
 - BUT based on reference case results, cumulative consumption of oil up to 2100 is ~ 25000 EJ ⇒ OK

Potential of renewables also updated
Current and future work

Non-CO₂ gases (2005)
• Calibration of CH₄ and N₂O emissions in the reference case
• Integration of the abatement options for
 - coal mining (7)
 - oil and natural gas sectors (4+15)
 - waste management (8)
 - manure management (2)
 - adipic & nitric acid industry (8)
• Use of cost curves provided by EMF-21

Hedging and climate sensitivity (2005-2006)
• Implementation of Stochastic Programming
• Simulations of uncertain long term stabilization targets using the climate module

• Simulation of Transition Policies

Role of ETSAP in EMF-22

Interest by EMF-22 in the active participation of ETSAP
• High degree of development of the TIMES model (integrated assessment with the Climate module)
• Technology oriented modeling approach (becoming a necessity for representing detailed policies)
• High visibility of ETSAP and its multi-country membership

Participation of ETSAP in Study groups
• Hedging
• Transition Policies

Benefit for ETSAP
• Data: other gases (EMF-21), latest knowledge on climate
• Visibility (publications)
• Reinforce collaboration with other BU and TD modelers
2. Climate Module

Approach: 3-step climate module

Equations
Adapted from the model proposed by Nordhaus and Boyer (1999)
Well documented + simple
Good approximation of those obtained from more complex climate models

Equations: concentration
Accumulation of CO₂ results from the transfer of carbon between:
- the atmosphere
- the quickly mixing upper ocean + biosphere
- the deep ocean (low mixing)
⇒ CO₂ flows in both directions between adjacent reservoirs

Linear

\[
M_{\text{atm}}(y) = E(y) + (1 - \phi_{\text{atm}-\text{up}}) M_{\text{atm}}(y-1) + \psi_{\text{atm-\text{atm}}} M_{\text{atm}}(y-1)
\]

(1)

\[
M_{\text{up}}(y) = (1 - \phi_{\text{atm-\text{up}}}) M_{\text{atm}}(y-1) + \psi_{\text{atm-\text{up}}} M_{\text{atm}}(y-1) + \psi_{\text{atm-\text{up}}} M_{\text{atm}}(y-1)
\]

(2)

\[
M_{\text{fo}}(y) = (1 - \phi_{\text{atm-\text{up}}}) M_{\text{atm}}(y-1) + \psi_{\text{atm-\text{fo}}} M_{\text{atm}}(y-1)
\]

(3)

with
- \(M_{\text{atm}}(y), M_{\text{up}}(y), M_{\text{fo}}(y) \): masses of CO₂ in atmosphere, in a quickly mixing reservoir representing the upper level of the ocean and the biosphere, and in deep oceans (GtC), respectively (GtC)
- \(E(y) \): CO₂ emissions (GtC)
- \(\phi_{ij} \): transport rate from reservoir \(i \) to reservoir \(j \) (\(i, j = \text{atm, up, fo} \)) from year \(y-1 \) to \(y \)
Equations: radiative forcing

Accumulation of GHGs leads to an increased radiative forcing at the surface of the earth.
Not controversial equation derived from empirical measurements and climate models.

Value of γ (sensitivity to CO$_2$ concentration doubling): 4.1 W/m2, 3.7 W/m2 in IPCC (2001)

Exogenous forcing:
- All non-CO$_2$
- Only non-CO$_2$ not included in the CO$_2$-eq.
- Uncertainties: aerosols (cooling/warming)

$$\Delta F(t) = \gamma \frac{\ln(M_{\text{pre}}(t)/M_0)}{\ln 2} + O(t)$$

where:
- M_0 (i.e. CO2 ATM_Pref_IND) is the pre-industrial (circa 1750) reference atmospheric concentration of CO$_2$ = 596.4 GtC
- γ is the radiative forcing sensitivity to atmospheric CO$_2$ concentration doubling = 4.1 W/m2
- $O(t)$ (i.e. EXOFORCING(t)), is the increase in total radiative forcing at period t relative to pre-industrial level due to anthropogenic GHG’s not accounted for in the computation of CO2 emissions. Units = W/m2.

Equations: temperature increase

Higher radiative forcing warms the atmospheric layer, which then warms the upper ocean, gradually warming the deep oceans.

Two reservoirs: atmospheric + upper level of the ocean, deep ocean.

Temperature change = globally and seasonally averaged temperature in the atmosphere and the upper level of the ocean.

Not considered: regional and seasonal variability, precipitations, speed of change.

Value of C_s (sensitivity to CO$_2$ concentration doubling: 1.5 to 4.5 °C, up to 10°C)

\[
\begin{align*}
\Delta T_{\text{atp}}(y) &= \Delta T_{\text{atp}}(y-1) + \sigma_1 \{ F(y) - \lambda \Delta T_{\text{atp}}(y-1) - \sigma_2 \{ \Delta T_{\text{atp}}(y-1) - \Delta T_{\text{low}}(y-1) \} \} \\
\Delta T_{\text{low}}(y) &= \Delta T_{\text{low}}(y-1) + \sigma_3 \{ \Delta T_{\text{atp}}(y-1) - \Delta T_{\text{low}}(y-1) \}
\end{align*}
\]

with:
- $\Delta T_{\text{atp}} = \text{globally averaged surface temperature increase above pre-industrial level,}$
- $\Delta T_{\text{low}} = \text{deep-ocean temperature increase above pre-industrial level,}$
- $\sigma_1 = \text{1-year speed of adjustment parameter for atmospheric temperature,}$
- $\sigma_2 = \text{coefficient of heat loss from atmosphere to deep oceans,}$
- $\sigma_3 = \text{1-year coefficient of heat gain by deep oceans,}$
- $\lambda = \text{feedback parameter (climatic retroaction) (\lambda = 4.1/C_s, C_s being the temperature sensitivity to CO}_2\text{ concentration doubling).}$
2. Climate Module

Variables and parameters

True variables
Three concentrations: atm, upper level of ocean+biosphere, deep ocean
Constraint is possible on atm concentration

Reporting parameters
Radiative forcing
Temperature changes: mean surface, deep ocean
Constraint on temp would result in non-linear non-convex optimisation pb

Input parameters (default values are included)
- CO₂ transfer rates between reservoirs
- Sensitivity of radiative forcing to the atm CO₂ concentration doubling
- Forcing of non-CO₂ GHGs?
- Heat transfer parameters
- Sensitivity of temperature to the atm CO₂ concentration doubling
- Historic (initial) values of concentrations and temperature increases
- Pre-industrial atmospheric concentration
- **Maximal CO₂ concentration**

GAMS Implementation and Reporting

- All required GAMS modules added to the code
- Climate Module implemented as a TIMES extension module

Rem: CO2ATM is interpolated on an annual basis
⇒ FORC, TATM and TLOW are calculated on an annual basis
⇒ Improvement in precision

- For reporting purpose, attributes have been added in the VEDA_BE report generator:
 - **CM_dt_forc:** Delta forcing
 - **CM_dt_tatm:** Temperature change in surface
 - **CM_dt_tlow:** Temperature change in deep layer
 - **VAR_co2tot:** Total CO₂ emissions by milestone year (in GtC)
 - **VAR_co2atm:** Mass of CO₂ in the atmosphere (in GtC)
 - **VAR_co2up:** Mass of CO₂ in the upper ocean layer (in GtC)
 - **VAR_co2lo:** Mass of CO₂ in the deep ocean layer (in GtC)
 - **EQ_co2concM:** Undiscounted annual shadow price of maximum CO₂ concentration constraint

See **www.etsap.org/documentation.asp**
Some illustrative results: Base case

- Inspired by the Common POLES-IMAGE (CPI)
- Moderate POP and GDP growth + technology progress
- Primary energy use continues to grow
- Gas & coal become the dominant energy carriers after 2050 (power plants and industry sector)
- Intermediate range of emissions (IPCC-SRES)

Primary energy (Base case)

- RNW
- HYDRO
- NUC
- OIL
- GAS
- COAL

CO2 emissions

- TIMES base case
- A1
- A2
- B1
- B2

Emission vs concentration target

Higher long-term emissions and earlier action

- Faster transition from fossil power plants to hydro and nuclear power plants
- Less renewable in LT
- Lower substitution to elc in end-use sectors in LT

Higher flexibility of concentration climate policies
Mitigation cost

Remarks
Value in 2080:
- 1538 $/tC with LT concentration limit
- 1869 $/tC with emission limit

Jump & high 2100 values: end-use constraints?

More results available (not shown): 450ppm, sequestration

TIMES documentation
www.etsap.org/documentation.asp