BIOMASS FOR ENERGY USES: METHODOLOGY AND RESULTS FOR FRANCE

Gilles Guerassimoff
Edi Assoumou
Nadia Maïzi

Overview of the presentation

- Context
- Objectives
- Tools and assumptions
 - Scenarios
 - Resources analysis
 - Technologies description
- Results
- Conclusion and perspectives
Context

- Fossil fuel scarcity and environmental concerns are good drivers for renewable alternatives studies
 - How to assume the continuity of liquid fuel?
 - Are biofuels an acceptable and sustainable solution?
 - Which biomass can be use?
 - Which landfield is available without competition with food?
 - Which rate of incorporation as a substitution?

- To answer these questions prospective studies are helpful to policy makers

Objectives

- This study deals with the methodology elaborated to assess the potential of biomass for energy use in France:
 - Using a detailed representation of biomass sources (agriculture and wood products)
 - Taking into account the spatiality of the resources (the country is separated in several regions)
 - Regarding their economical evolutions (costs of production and transport are forecasted on the time horizon)
 - Having a rich technological database for energy generation with biomass input (1st and 2nd generation)
Overview of the presentation

- Context
- Objectives
- **Tools and assumptions**
 - Scenarios
 - Resources analysis
 - Technologies description
- Results
- Conclusion and perspectives

Modeling

- French MARKAL/TIMES Bottom up model is used
 - Time horizon is 2005-2050
 - Demand driven (fuels) and given energy prices
 - All sectors included in the demand forecast
- We only deals with available landfield for energy without food competition
 - Base on marginal and useless landfields
- Detailed technology database including the most promising 2nd generation biofuel production (including co products)
Overview of the presentation

- Context
- Objectives
- Tools and assumptions
 - Scenarios
 - Resources analysis
 - Technologies description
- Results
- Conclusion and perspectives
Scenarios

- 3 levels to describe about 50 scenarios
 - **Resources**: combination of agricultural products, wood and Short Rotation Coppice (SRC).
 - **Demands**: several level of bio-energy demands
 - **Technologies**: development's limitations for specific technologies (processes for ethanol production, BtL)

- Commodities
 - **Fuels**: direct use of biomass (heat, cogeneration)
 - **Liquid fuels**: direct use of biofuels
 - **Electricity**: use of electricity produced with biomass (by cogeneration or co-product)

Potential scenarios

- 3 level scenarios
 - P1: BAU (Business As Usual)
 - P2: Dynamic wood (wood is mostly use for non energy applications)
 - P3: All for energy (biomass mostly use for energy)

- For each, 2 kinds of prices for biomass (high and low)

<table>
<thead>
<tr>
<th>Agricultural products potential</th>
<th>Wood potential</th>
<th>SRC potential</th>
<th>Global potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1A-PB (PB for Moderate price)</td>
<td>S1-F</td>
<td>BAU</td>
<td>P1</td>
</tr>
<tr>
<td>S1A-PH (PH for High price)</td>
<td>S1-F</td>
<td>BAU</td>
<td>P1b</td>
</tr>
<tr>
<td>S2A-PH</td>
<td>S2-F</td>
<td>S2-SRC</td>
<td>P2</td>
</tr>
<tr>
<td>S1A-PB</td>
<td>S2-F</td>
<td>S2-SRC</td>
<td>P2b</td>
</tr>
<tr>
<td>S2A-PH</td>
<td>S3-F</td>
<td>S1-SRC</td>
<td>P3</td>
</tr>
<tr>
<td>S2A-PH</td>
<td>S3-F</td>
<td>S2-SRC</td>
<td>P3</td>
</tr>
</tbody>
</table>
Demand scenarios

- 3 levels of imposed production for bio-products:
 - D1: 20 Mteo
 - D2: 40 Mteo (with 2 cases: a)+cogeneration; b)+bio(jet)
 - D3: 30 Mteo (with 2 cases: a)+cogeneration; b)+bio(jet)

Overview of the presentation

- Context
- Objectives
- Tools and assumptions
 - Scenarios
 - Resources analysis
 - Technologies description
- Results
- Conclusion and perspectives
Studied resources

- **Agriculture**
 - Grains, whole plant, straw for:
 - Corn
 - Wheat
 - Rape
 - Triticale
 - Sugar beet
 - Sunflower
 - Miscanthus
 - Eucalyptus
 - Jatropha, Palm, Poplar…
 - Residu

- **Wood**
 - 3 Types
 - Big
 - Medium
 - Small
 - 4 Accessibilities
 - Easy (FA)
 - Moderately Difficult (MD)
 - Difficult (DI)
 - Very difficult (TD)

SRC: Short Rotation Coppice

Detailed spatiality for landfield

- Pertinent regions for agricultural and wood resources
- Each region has a detailed economic description (cost of production and transport by resource)
- Realistic evolutions and bounds on region’s potentials
Wood potentials

- Imply different costs depending on accessibility
- Will influence the final choice for the technologies

Agriculture potentials
Overview of the presentation

- Context
- Objectives
- Tools and assumptions
 - Scenarios
 - Resources analysis
 - Technologies description
- Results
- Conclusion and perspectives

Processes for biofuels production

- Economical values for all of the processes
- Valorization of the production of heat and power
- Valorization of the Co-products

<table>
<thead>
<tr>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTLFTDSL</td>
<td>FT (Fischer-Tropsch)-diesel wood</td>
</tr>
<tr>
<td>BTLFTDSLB</td>
<td>FT-diesel straw</td>
</tr>
<tr>
<td>ESTERFIP</td>
<td>Trans-esterification</td>
</tr>
<tr>
<td>ESTERFIPH</td>
<td>Advanced Trans-esterification</td>
</tr>
<tr>
<td>ETHAMIDO</td>
<td>Ethanol starch (Amidon)</td>
</tr>
<tr>
<td>ETHBOIG2</td>
<td>Ethanol wood</td>
</tr>
<tr>
<td>ETHBOIG2B</td>
<td>Ethanol straw</td>
</tr>
<tr>
<td>ETHSUCRI</td>
<td>Ethanol sugar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commodities</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIODST</td>
<td>FT synthetic diesel</td>
</tr>
<tr>
<td>BIOEMHV</td>
<td>Biodiesel</td>
</tr>
<tr>
<td>BIOETHA</td>
<td>Bioethanol</td>
</tr>
</tbody>
</table>
Biofuels production scheme

A detail of the RES
Overview of the presentation

- Context
- Objectives
- Tools and assumptions
 - Scenarios
 - Resources analysis
 - Technologies description
- Results
- Conclusion and perspectives

Mix of Technologies

- Mix of technologies for Biofuels production for 3 different potentials
Resources used by zone

- Resources used for one zone, for 3 different potentials and a given demand scenario

Electricity production

- Electricity production (cogeneration and co-product)
Overview of the presentation

- Context
- Objectives
- Tools and assumptions
 - Scenarios
 - Resources analysis
 - Technologies description
- First preliminary results
- **Conclusion and perspectives**
Conclusions & perspectives

- Detailed potentials for biomass with their evolution for each region
 - Permit to assess the future implantation of conversion unit
- Validation of the Implementation of this cutting up in the French model
- A Tool to assess the limits of the French potential of biomass for biofuels is operational
- Results are promising and several detailed cases will be published soon
- Sensitivity analysis will be carried out
- Detailed scenarios can be presented to policy makers

THANK YOU FOR YOUR ATTENTION

Centre for Applied Mathematics
Mines ParisTech
In collaboration with IFP, FCBA, INRA in the Valerbio Project