The role of Electrical vehicles in Europe
- Outcome from the ERA-Net Project EV-STEP

PD. Dr. Markus Blesl

Institut für Energiewirtschaft und Rationelle Energieanwendung, Universität Stuttgart

Copenhagen, Electro-mobility and EV-Step regional workshop
17th November 2014
Motivation and objective

- What will be the perspective electro-mobility in the transport sector of the EU-28 as a whole and in the countries is one main question at the moment?
- Varied assumptions concerning energy, climate and environmental policy in the EU can have impact on the role of electro-mobility.
- The penetration of electric vehicle concepts can have impacts on the sustainability of both, transport sector and the total energy system.

Analyze with a scenario analysis the role of electro-mobility in the energy system in the EU-28 and there member states.
TIMES PanEU

- Technology oriented bottom-up partial equilibrium model
- 30 region model (EU 28, No, CH, IS)
- Energy system model
 - **SUPPLY:** reserves, resources, exploration and conversion Country specific renewable potential and availability (onshore wind, offshore wind, ocean, geothermal, biomass, biogas, hydro)
 - Electricity: public electricity plants, CHP plants and heating plants
 - Residential and Commercial: End use technologies (space heating, water heating, space cooling and others)
 - Industry: Energy intensive industry (Iron and steel, aluminium copper ammonia and chlorine, cement, glass, lime, pulp and paper), food, other industries, autoproducer and boilers
 - Transport: Different transport modes (cars, buses, motorcycles, trucks, passenger trains, freight trains), aviation and navigation
- Country specific differences for characterisation of new conversion and end-use technologies
- Time horizon 2010 - 2050
- GHG: CO2, CH4, N2O, SF6 /Others pollutants: SO2, NOx, CO, NMVOC, PM2.5, PM10
Schematic representation of the consideration of Vehicle-to-Grid (V2G) energy storage in TIMES PanEU

- Idea: Electric vehicles (BEV, PHEV) serve as energy storage if connected to grid
- Thus, they could provide (peak) electricity if necessary
- Recharging during off-peak times
- However, keep sufficient energy for vehicle trips
- Additional battery cycles decrease battery lifetime!
Development of specific investment cost of batteries

- Bain & Company (2010)
- CSM (2009)
- Deutsche Bank (2009)
- Deutsche Bank (2010)
- DOE (2010)
- Goldman Sachs (2010)
- IEK (2011)
- JC (2010)
- McKinsey (2012)
- USABC (2008)
Overview of the scenarios

<table>
<thead>
<tr>
<th></th>
<th>REF</th>
<th>REF-</th>
<th>EU</th>
<th>EU-</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG reduction target</td>
<td>EU-ETS: -21% till 2020 comp. 2005 afterwards -1,74% p.a.</td>
<td>Overall GHG reduction -20% till 2020 and -80% till 2050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renewable</td>
<td>Increasing reliance on RES, 60% share in electricity consumption 2050</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electromobility</td>
<td>national targets</td>
<td>no</td>
<td>national targets</td>
<td>no</td>
</tr>
<tr>
<td>Biofuels</td>
<td>national targets</td>
<td>no</td>
<td>national targets</td>
<td>no</td>
</tr>
</tbody>
</table>

Social economic assumptions:

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Mio.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average growth per annum</td>
<td></td>
<td>497</td>
<td>500</td>
<td>499</td>
<td>491</td>
</tr>
<tr>
<td>%</td>
<td></td>
<td>0,01</td>
<td>0,00</td>
<td>-0,2</td>
<td>-0,3</td>
</tr>
<tr>
<td>GDP</td>
<td>10^{12}€_{07}</td>
<td>12,0</td>
<td>15,1</td>
<td>17,9</td>
<td>20,9</td>
</tr>
<tr>
<td>Average growth per annum</td>
<td></td>
<td></td>
<td>1,7</td>
<td>1,7</td>
<td>1,6</td>
</tr>
</tbody>
</table>
Mobility demand in the EU28

<table>
<thead>
<tr>
<th></th>
<th>EU-28</th>
<th>2005</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger traffic</td>
<td>Bio. Pkm</td>
<td>5.857</td>
<td>6.458</td>
<td>6.796</td>
<td>6.884</td>
<td>6.911</td>
</tr>
<tr>
<td>(without aviation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>car/motorcycles</td>
<td>%</td>
<td>83,6</td>
<td>83,8</td>
<td>84,0</td>
<td>84,2</td>
<td>84,5</td>
</tr>
<tr>
<td>bus</td>
<td>%</td>
<td>8,8</td>
<td>8,4</td>
<td>8,1</td>
<td>7,9</td>
<td>7,7</td>
</tr>
<tr>
<td>train</td>
<td>%</td>
<td>7,6</td>
<td>7,8</td>
<td>7,9</td>
<td>7,9</td>
<td>7,8</td>
</tr>
<tr>
<td>Aviation</td>
<td>PJ</td>
<td>2.066</td>
<td>2.947</td>
<td>3.399</td>
<td>3.634</td>
<td>3.787</td>
</tr>
<tr>
<td>Good transport</td>
<td>Bio. tkm</td>
<td>2.549</td>
<td>3.268</td>
<td>3.762</td>
<td>4.009</td>
<td>4.133</td>
</tr>
<tr>
<td>trucks</td>
<td>%</td>
<td>72,3</td>
<td>74,8</td>
<td>75,1</td>
<td>75,2</td>
<td>75,0</td>
</tr>
<tr>
<td>rail</td>
<td>%</td>
<td>16,7</td>
<td>14,7</td>
<td>14,4</td>
<td>14,5</td>
<td>14,6</td>
</tr>
<tr>
<td>navigation</td>
<td>%</td>
<td>11,0</td>
<td>10,4</td>
<td>10,5</td>
<td>10,3</td>
<td>10,3</td>
</tr>
</tbody>
</table>
Scenario analysis CO₂ Emissions (EU-28)
Net Electricity Supply (EU-28)

Share of renewable electricity generation of total gross electricity consumption

Net electricity supply [TWh]

- Electricity storage (excl. pump storage)
- Electricity Imports Desertec
- Net Imports w/o Desertec
- Others / Waste non-ren.
- Other Renewables
- Biomass / Waste ren.
- Solar
- Wind offshore
- Wind onshore
- Hydro (incl. pump storage)
- Nuclear
- Gas CCS
- Gas w/o CCS
- Oil
- Lignite CCS
- Lignite w/o CCS
- Coal CCS
- Coal w/o CCS
- Share of renewable energies
Final Energy Consumption Electricity (EU-28)

Electricity consumption [PJ]

- Agriculture
- Transport
- Residential
- Industry
- Commercial

2010
2020
2030
2040
2050
Final energy consumption transport by transport mode (EU-28)

- Navigation
- Aviation
- Rail
- Trucks
- Bus

The role of electrical vehicles in Europe

17th November 2014
Final energy consumption transport by energy carrier (EU-28)
Final energy consumption cars by energy carrier (EU-28)
Stock of cars by engine type (EU-28)
Stock of trucks and buses (EU-28)
Conclusion and Outlook

● The penetration of electrical vehicles not only depends on the share of renewables it is influenced mainly by the GHG reduction target.

● Till 2030 the assumed cost reduction for batteries and the GHG reduction targets are too low to bring electro-mobility in the transport sector without subsidies.

● Supporting electro-mobility influence the penetration in the midterm, in the long term it’s the option to decarbonize the transport sector.

● A sensitivity analysis related the battery cost and the share of renewable electricity generation of the gross electricity generation will follow.
Thank you for your attention!

IER Institut für Energiewirtschaft
Rationelle Energieanwendung
Heßbrühlstr. 49a, 70565 Stuttgart
Tel.: +49 711 / 685 878 65
E-mail: Markus.Blesl@ier.uni-stuttgart.de