Gas grid scales and their impact on biogas production and utilization – a modeling analysis

Martin Börjesson & Erik O. Ahlgren
Division of Energy Technology
Department of Energy and Environment
Chalmers Univ of Technology
Göteborg, Sweden

ETSAP Nov 9, 2011

District heating (DH) systems (In Sweden)

- Large share of urban and municipality heating markets
- Major change of fuel/heat supply
 - from oil
 - to biomass, municipal solid waste and industrial waste heat
- Still rather small but increasing CHP share
- Thus, potential for improvement

Based on this we have already done a number of studies assessing bioenergy technologies in a DH system context
Biogas

- Biogas from anaerobic digestion can be a contributor to a more environmentally benign energy system:
 - Potential feedstock consists to high degree of waste products with few alternative areas of use.
 - High carbon mitigation efficiency
- Potentials based on available feedstock are about 10 times higher than current use.
- Today biogas is used mainly for heating and as transport fuel (while in the rest of Europe for CHP)
- Several problem areas have been highlighted:
 - Limited and fragmented markets
 - Lack of profitability for producers
 - Lack of infrastructure

<table>
<thead>
<tr>
<th>Background</th>
<th>Purpose</th>
<th>Method</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

Heated debate

- Natural gas infrastructures or not
 - synergistic effects between natural gas and biogas, vs.
 - a natural gas grid expansion may be to the disadvantage of renewable energy (in particular bioenergy), and
 - local markets are large enough for the existing biogas potential.

<table>
<thead>
<tr>
<th>Background</th>
<th>Purpose</th>
<th>Method</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
</table>
Purpose

• Main questions of investigation:

—What policy support levels are required to overcome the techno-economic barriers of increased biogas utilisation?

—How do different biogas distribution strategies affect the techno-economic potential of biogas?

Methodological approach:
A case study taking geographical aspects into account

• Studied region: Västra Götaland

• Potential biogas substrate supply, production, and use specified on a municipality level.

• Different inter-municipal biogas distribution options are contrasted.

—Performance depends on transport distances, amount of biogas distributed, geographical gas grid coverage
Gas grid scale options (strategic choices modeled)

• Local biogas scale (“Local”)
 — Biogas is utilised locally, within the municipality in which it is produced.

• Grid-based regional biogas scale (“Regional”)
 — Biogas grids can be built within the same local government federation area, i.e. Skaraborg, Sjuhärad, Fyrbodal, GBG region.

• Truck-based distribution biogas scale (“Truck”)
 — Compressed biogas can be transported anywhere within the Västra Götaland region.

• National natural gas grid scale (“NG Grid+”)
 — Large (exogenous) expansion of the natural gas grid is assumed. Biogas can be injected in the grid and co-distributed with natural gas.
Energy systems modelling approach using a

- Techno-economic, bottom-up, partial equilibrium, cost-minimising, optimisation model built in the MARKAL framework

- MIP – mixed integer programming

- System boundaries
 - Geographical: Region of Västra Götaland with individual representation of 48 municipalities.
 - Time: 2004-2029 (5 model years, 3 seasons/year)
 - Energy systems: district heating systems, biogas systems
 - demand for district heat, markets for electricity and transport fuels

<table>
<thead>
<tr>
<th>Background</th>
<th>Purpose</th>
<th>Method</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

Local biogas system

<table>
<thead>
<tr>
<th>Background</th>
<th>Purpose</th>
<th>Method</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
</table>
Energy market assumptions (Base)

• Transport fuel market:
 — Biogas as vehicle gas can be sold at 80% of the petrol price (incl. CO₂)
 — A maximum of 10% of the total transport fuel use in 2019 and 20% in 2029 is allowed to be biogas (in each local market/municipality)

• Price-setting marginal electricity technology:
 — Either coal condensing or natural gas condensing power plants depending on which has the lowest variable production cost at the time (season, model year)

• Fuel and CO₂ prices 2009→2029: *based on WEO 2010
 — Crude oil*: 27→40 EUR2004/MWh (60→90 USD2009/barrel)
 — NG*: 19→28 EUR2004/MWh
 — CO₂*: 20→80 EUR2004/ton
 — Biomass: 20→27 EUR2004/MWh

Modeling

• An optimisation model applied with a simulating approach
• Each gas distribution scenario is run multiple times with different biogas subsidy levels
 — Biogas subsidy range: 0-60 EUR/MWh
 — Subsidy is given to biogas utilisation regardless of sector
Biogas utilisation

– in a cost-minimised system for different biogas subsidy levels and gas distribution strategies

Background

Purpose

Method

Results

Conclusions

Biogas utilisation

Regional biogas grids

at a subsidy of 60 EUR/MWh
Findings

- While large shares of the technical biogas potential could be reached with comparably low subsidies (e.g., 60-85% at 30 EUR/MWh), utilisation levels close to full technical potential are linked to substantial governmental subsidy expenditures.

- Better conditions for biogas distribution leads to some extent to higher cost-effective total biogas utilisation levels, but, in particular, to a shift from biogas used in CHP to biogas as vehicle gas.

- The base assumptions show that an expanded natural gas grid could imply higher cost-effective biogas utilisation levels than other biogas distribution strategies, but...
 - ...there is also a risk of the opposite development with lower utilisation of biogas as well as of bioenergy in general.

 → Biogas distribution based on trucks and biogas grids constitute more robust strategies.

Change in fuel use and electricity generation in DH sector

<table>
<thead>
<tr>
<th>Background</th>
<th>Purpose</th>
<th>Method</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Subsidy [EUR/MWh]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCAL</td>
</tr>
<tr>
<td>Biomass</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Background</th>
<th>Purpose</th>
<th>Method</th>
<th>Results</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Subsidy [EUR/MWh]:</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCAL</td>
</tr>
<tr>
<td>Biomass</td>
</tr>
</tbody>
</table>
System costs and subsidies

Average subsidies per abatement of CO$_2$ (a) and of regional oil/natural gas use (b)
Sensitivity analysis - Risks with NG grid expansion

- If NG is a competitor to transport biogas: less biogas
 - If electricity price is high: less bioenergy in DH

Conclusions

- While large shares of the technical biogas potential could be reached with comparably low subsidies (e.g., 60–85% at 30 EUR/MWh), utilisation levels close to full technical potential are linked to substantial governmental subsidy expenditures.

- To some extent, better conditions for biogas distribution leads to higher cost-effective total biogas utilisation levels but, in particular, to a shift from biogas used in CHP to biogas as vehicle gas.

- The base assumptions show that an expanded natural gas grid could imply higher cost-effective biogas utilisation levels than other biogas distribution strategies, but...
 - there is also a risk of the opposite development with lower utilisation of biogas as well as of bioenergy in general.
 - Biogas distribution based on trucks and biogas grids constitute more robust strategies.