Gas grid scales and their impact on biogas production and utilization – a modeling analysis

Martin Börjesson & Erik O. Ahlgren

Division of Energy Technology Department of Energy and Environment Chalmers Univ of Technology Göteborg, Sweden

ETSAP Nov 9, 2011

CHALMERS

District heating (DH) systems (in Sweden)

- Large share of urban and municipality heating markets
- Major change of fuel/heat supply
 - from oil
 - to biomass, municipal solid waste and industrial waste heat
- Still rather small but increasing CHP share
- Thus, potential for improvement

Based on this we have already done a number of studies assessing bioenergy technologies in a DH system context

Biogas

- Biogas from anaerobic digestion can be a contributor to a more environmentally benign energy system:
 - Potential feedstock consists to high degree of waste products with few alternative areas of use.
 - High carbon mitigation efficiency
- Potentials based on available feedstock are about 10 times higher than current use.
- Today biogas is used mainly for heating and as transport fuel (while in the rest of Europe for CHP)
- Several problem areas have been highlighted:
 - Limited and fragmented markets
 - Lack of profitability for producers
 - Lack of infrastructure

Background

CHALMERS

Heated debate

- Natural gas infrastructures or not
 - synergistic effects between natural gas and biogas,
 - a natural gas grid expansion may be to the disadvantage of renewable energy (in particular bioenergy), and
 - local markets are large enough for the existing biogas potential.

Purpose

- Main questions of investigation:
 - —What policy support levels are required to overcome the techno-economic barriers of increased biogas utilisation?
 - —How do different biogas distribution strategies affect the techno-economic potential of biogas?

Background Purpose Method Results Conclusions

CHALMERS

Methodological approach: A case study taking geographical aspects into account

- Studied region: Västra Götaland
- Potential biogas substrate supply, production, and use specified on a municipality level.
- Different inter-municipal biogas distribution options are contrasted.
 - Performance depends on transport distances, amount of biogas distributed, geographical gas grid coverage

Background

Purnose

Method

Results

Conclusions

Gas grid scale options (strategic choices modeled)

- Local biogas scale ("Local")
 - Biogas is utilised locally, within the municipality in which it is produced.
- Grid-based regional biogas scale ("Regional")
 - Biogas grids can be built within the same local government federation area, i.e. Skaraborg, Sjuhärad, Fyrbodal, GBG region.
- Truck-based distribution biogas scale ("Truck")
 - Compressed biogas can be transported anywhere within the Västra Götaland region
- National natural gas grid scale ("NG Grid+")
 - Large (exogenous) expansion of the natural gas grid is assumed.
 Biogas can be injected in the grid and co-distributed with natural gas.

Background Purpose Method Results Conclusions

CHALMERS

Regional

NG Grid+

Energy systems modelling approach using a

- Techno-economic, bottom-up, partial equilibrium, costminimising, optimisation model built in the MARKAL framework
- MIP mixed integer programming
- System boundaries
 - Geographical: Region of Västra Götaland with individual representation of 48 municipalities.
 - Time: 2004-2029 (5 model years, 3 seasons/year)
 - Energy systems: district heating systems, biogas systems
 - demand for district heat, markets for electricity and transport fuels

Background Purpose Method Results Conclusions

CHALMERS UNIVERSITY OF TECHNOLOGY

Local biogas system

5

Energy market assumptions (Base)

- Transport fuel market:
 - Biogas as vehicle gas can be sold at 80% of the petrol price (incl. CO₂)
 - A maximum of 10% of the total transport fuel use in 2019 and 20% in 2029 is allowed to be biogas (in each local market/municipality)
- Price-setting marginal electricity technology:
 - Either coal condensing or natural gas condensing power plants depending on which has the lowest variable production cost at the time (season, model year)
- Fuel and CO2 prices 2009→2029: *based on WEO 2010

— Crude oil*: 27→40 EUR2004/MWh (60→90 USD2009/barrel)

NG*: 19→28 EUR2004/MWh
 CO2*: 20→80 EUR2004/ton
 Biomass: 20→27 EUR2004/MWh

Background Purpose Method Results Conclusions

CHALMERS

Modeling

- An optimisation model applied with a simulating approach
- Each gas distribution scenario is run multiple times with different biogas subsidy levels
 - Biogas subsidy range: 0-60 EUR/MWh
 - Subsidy is given to biogas utilisation regardless of sector

Biogas utilisation

 in a cost-minimised system for different biogas subsidy levels and gas distribution strategies

Background

Purpose

Method

Results

Conclusions

CHALMERS

Regional biogas grids at a subsidy of 60 EUR/MWh

Backgroun

Purpose

Method

Results

Conclusions

Findings

- While large shares of the technical biogas potential could be reached with comparably low subsidies (e.g., 60-85% at 30 EUR/MWh),
 - utilisation levels close to full technical potential are linked to substantial governmental subsidy expenditures.
- Better conditions for biogas distribution leads to some extent to higher costeffective total biogas utilisation levels
 - but, in particular, to a shift from biogas used in CHP to biogas as vehicle gas.
- The base assumptions show that an expanded natural gas grid could imply higher cost-effective biogas utilisation levels than other biogas distribution strategies, but...
 - ...there is also a risk of the opposite development with lower utilisation of biogas as well as of bioenergy in general.
 - → Biogas distribution based on trucks and biogas grids constitute more robust strategies

Background Purpose Method Results Conclusions

CHALMERS

Change in fuel use and electricity generation in DH sector

System costs and subsidies

Background Purpose Method Results Conclusions

CHALMERS

Average subsidies per abatement of CO_2 (a) and of regional oil/natural gas use (b)

Sensitivity analysis -Risks with NG grid expansion

- If NG is a competitor to transport biogas: less biogas
- If electricity price is high: less bioenergy in DH

CHALMERS UNIVERSITY OF TECHNOLOGY

Conclusions

- While large shares of the technical biogas potential could be reached with comparably low subsidies (e.g., 60-85% at 30 EUR/MWh), utilisation levels close to full technical potential are linked to substantial governmental subsidy expenditures.
- To some extent, better conditions for biogas distribution leads to higher cost-effective total biogas utilisation levels but, in particular, to a shift from biogas used in CHP to biogas as vehicle gas.
- The base assumptions show that an expanded natural gas grid could imply higher cost-effective biogas utilisation levels than other biogas distribution strategies, but...
 - ...there is also a risk of the opposite development with lower utilisation of biogas as well as of bioenergy in general.
 - → Biogas distribution based on trucks and biogas grids constitute more robust strategies

Background Purpose

Method

Results

Conclusions