Value of the interconnectors in the Nordic countries

Jacopo Tattini
PhD Student at Energy System Analysis Group
System Analysis Division
DTU Management Engineering

Maurizio Gargiulo
E4SMA
Agenda

- Background
- TIMES-NordPool
- Analysis of power trade in the Nordic countries
- Analysis of grid expansion possibilities
- Sensitivity analysis on effect of no grid expansion
- Conclusions
Agenda

- **Background**
 - TIMES-NordPool
 - Analysis of power trade in the Nordic countries
 - Analysis of grid expansion possibilities
 - Sensitivity analysis on effect of no grid expansion
 - Conclusions
Background: Nord Pool market

Nord Pool: power trading market of Nordic and Baltic countries.

The auctioning countries are divided into bidding areas linked with interconnectors controlled by the TSOs.

If the power flows between the bidding areas exceed the interconnectors transmission limit, grid congestion occurs.

Bottlenecks in the interconnectors lead to different prices in the various areas composing the Nordic electric system.
Benefits of interconnectors capacity expansion

Interconnectors are one of the main power price drivers in the Nordic countries. Interconnectors are essential for the integration of variable power sources.

Interesting to assess their role and their influence on the power trade

Source: L’ Abbate et al. (2011)
Agenda

- Background
- **TIMES-NordPool**
 - Analysis of power trade in the Nordic countries
 - Analysis of grid expansion possibilities
 - Sensitivity analysis on effect of no grid expansion
- Conclusions
TIMES-NordPool: represents the Norwegian, Swedish and Finnish power and thermal systems.

Purposes:
- To be run together with TIMES-DK to better simulate power trade processes
- Exploring the future power exchange between the Nordic countries under different assumptions
- Assessing transmission capacity expansion under different scenarios
TIMES-NordPool: Spatial resolution

- Multiregional model: Each country = One region

- Interconnectors between Norway, Finland and Sweden implemented as **endogenous trade processes**

 Power prices and volumes endogenously optimized

- Interconnectors between Nordic countries and neighboring countries implemented as **exogenous trade processes**

 Power volumes calculated according to price related criteria
TIMES-NordPool: Hard-linking with TIMES-DK

All interconnections between Nordic countries as endogenous processes
TIMES-NordPool: Time structure

- Same 32 time slices as TIMES-DK → The models are consistent
- Base Year: 2010
- Time horizon: 2010-2050
Agenda

- Background
- TIMES-NordPool

Analysis of power trade in the Nordic countries
- Analysis of grid expansion possibilities
- Sensitivity analysis oneffect of no grid expansion
- Conclusions
Assumptions for the analysis

All *analyses* on the power trade between the Nordic countries have been performed using *TIMES-NordPool hard-linked to TIMES-DK*.

Baseline scenario considers:

- DKW and DKE: power and thermal system fossil free by 2035, entire energy system fossil free by 2050

- NOR, FIN, SWE: no environmental constraints (NETP Carbon Neutral scenario is implemented but not activated)
Transmission grid in the base year

High integration of power systems

Source: ENTSO-E (2012)
Transmission grid expansion

Starting grid

Exogenous grid expansion

Source: ENTSO-E (2014)
Power generation in 2050

DKE
- Wind Onshore: 65%
- Solar: 35%

DKW
- Wind Onshore: 82%
- Solar: 18%

FIN
- Nuclear: 22%
- Coal: 42%
- Wind Onshore: 3%
- Wind Offshore: 12%

NOR
- Wind Onshore: 13%
- Wind Offshore: 17%
- Coal: 9%
- Natural Gas: 4%
- Hydro: 57%

SWE
- Coal: 19%
- Nuclear: 4%
- Wind Onshore: 6%
- Wind Offshore: 11%
- Biomass: 4%
- Hydro: 56%
Electricity prices in 2050
Trade is ongoing:
- Until marginal costs equal
- Until congestion occurs
Price convergence

Between 2010 and 2020 about 7.5 GW of new transmission lines are installed
Agenda

• Background
• TIMES-NordPool
• Analysis of power trade in the Nordic countries
Analysis of grid expansion possibilities
• Sensitivity analysis on effect of no grid expansion
• Conclusions
Analysis of grid expansion

• Uncertainty on grid expansion after 2020

• Endogenous optimization of grid expansion

• Possible new interconnectors from ENTSO-E in Ten-Year Network Development Plan 2014 (TYNDP)

• Constraint on starting year, no on transmission capacity
Uncertainty on costs of future interconnectors

Sensitivity analysis with interconnectors costs: under which cost condition the interconnectors are built?

<table>
<thead>
<tr>
<th>Country Pair</th>
<th>Low k€/MW</th>
<th>Medium INVCOST</th>
<th>Medium O&M</th>
<th>High INVCOST</th>
<th>High O&M</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOR-SWE</td>
<td>190</td>
<td>0.4</td>
<td>310</td>
<td>0.7</td>
<td>440</td>
</tr>
<tr>
<td>NOR-FIN</td>
<td>600</td>
<td>1.4</td>
<td>1000</td>
<td>2.3</td>
<td>1400</td>
</tr>
<tr>
<td>SWE-FIN</td>
<td>56</td>
<td>0.1</td>
<td>91</td>
<td>0.2</td>
<td>130</td>
</tr>
<tr>
<td>DKW-DKE</td>
<td>430</td>
<td>1.0</td>
<td>725</td>
<td>1.6</td>
<td>1020</td>
</tr>
<tr>
<td>DKW-SWE</td>
<td>560</td>
<td>1.3</td>
<td>930</td>
<td>2.1</td>
<td>1300</td>
</tr>
<tr>
<td>SWE-GER</td>
<td>260</td>
<td>0.6</td>
<td>429</td>
<td>1.0</td>
<td>600</td>
</tr>
<tr>
<td>SWE-LAT</td>
<td>300</td>
<td>0.7</td>
<td>500</td>
<td>1.1</td>
<td>700</td>
</tr>
<tr>
<td>NOR-HOL</td>
<td>1033</td>
<td>2.3</td>
<td>1721</td>
<td>4.0</td>
<td>2410</td>
</tr>
</tbody>
</table>

Source: ENTSO-E (2014)
Endogenous grid expansion: sensitivity analysis

Low interconnectors costs

Medium interconnectors costs

High interconnectors costs

Exogenous power prices not consistent
Agenda

- Background
- TIMES-NordPool
- Analysis of power trade in the Nordic countries
- Analysis of grid expansion possibilities
- **Sensitivity analysis on effect of no grid expansion**
- Conclusions
Sensitivity analysis: only existing interconnectors

How does the Nordic power system react to a changeless transmission grid?

Only interconnectors existing or under construction by 2015 are considered.

<table>
<thead>
<tr>
<th>Region</th>
<th>Average relative price increase</th>
<th>Average absolute price increase (€/MWh)</th>
<th>Price relative stnrd dev increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKE</td>
<td>7%</td>
<td>3.4</td>
<td>59%</td>
</tr>
<tr>
<td>DKW</td>
<td>1%</td>
<td>0.5</td>
<td>64%</td>
</tr>
<tr>
<td>FIN</td>
<td>1%</td>
<td>0.5</td>
<td>53%</td>
</tr>
<tr>
<td>NOR</td>
<td>9%</td>
<td>3.9</td>
<td>88%</td>
</tr>
<tr>
<td>SWE</td>
<td>12%</td>
<td>4.8</td>
<td>87%</td>
</tr>
</tbody>
</table>

Most penalized country

November 2015
Agenda

- Background
- TIMES-NordPool
- Analysis of power trade in the Nordic countries
- Analysis of grid expansion possibilities
- Sensitivity analysis on effect of no grid expansion
- Conclusions
Conclusions

TIMES-NPM hard-linked to TIMES-DK allows:

- Calculating endogenously the power prices and volumes between Denmark and the rest of the Nordic countries → Limiting the risk of the assumptions on the exogenous trade processes for the Danish interconnectors

- Optimizing endogenously the transmission grid expansion

- Assessing for the Nordic interconnectors the cost thresholds within which they are feasible

- Assessing for each Nordic country the average increase of power prices if the planned interconnectors are not built