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1 Introduction

This document describes a draft design for generalizing the available TIMES
Demand Function formulations, focusing on the demand elasticities. Until TIMES
v4.0, only the linearized own-price elasticity formulation was available in the
common code. The corresponding non-linear formulation, which was available in
MARKAL (see Loulou & al. 2004), could well be introduced into TIMES as well, as
suggested in the draft design.

When substitution possibilities are to be modeled, demand functions involving
Constant Elasticity of Substitution (CES) aggregates are proposed to be made
available under the non-linear option. The formulation for including the CES
aggregates is based on the old sketches found in the MARKAL GAMS code (but
not active in the code), apparently designed by Dr. Denise van Regemorter and
implemented by Gary Goldstein. Just as under the own-price elasticity option,
the calibration of the CES functions is based on the demand projections and the
corresponding shadow prices from a Baseline TIMES run, with the substitution
elasticity between the demands within each category given as an input, together
with the own-price elasticity for the whole demand category.

Finally, a draft design for a simple linearization of the CES utility function
formulation is proposed and presented.

All the simple generalizations drafted in this note have been implemented in
TIMES v4.1.0. For now, the implementation should be still considered experi-
mental, and therefore any feedback and comments from TIMES users concerning
the formulation and implementation are welcome.
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2 Non-Linear Demand Functions

2.1 Demand functions with own-price elasticities

In the TIMES partial equilibrium formulation, each energy service demand is
assumed to have a constant own price elasticity function of the form:
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Where {DM0, P0} is a reference pair of demand and price values for that energy
service over the forecast horizon, and E is the (negative) own price elasticity of
that energy service demand, as chosen by the user (note that though not shown
by the notation, this price elasticity may vary over time). The pair {DM0, P0} is
obtained by solving TIMES for a Baseline scenario. More precisely, DM0 is the
demand projection estimated by the user in the reference case based upon
explicitly defined relationships to economic and demographic drivers, and P0 is
the shadow price of that energy service demand obtained by running the
Baseline scenario of the TIMES model.

The objective function maximizes the total present value surplus of the
consumers and producers, which is equivalent to minimizing the opposite
number. The surplus is obtained by integrating the difference between the
demand price functions and the supply cost functions from zero to the demand
levels. The supply cost functions are integrated simply by taking the vector
product cT  X (in present value terms), and the demand price functions can also
be easily integrated from the following representation:
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The full objective function can thus be written as:
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Here, PVF is the present value factor and the constants dci can be calculated as
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2.2 CES Utility Functions

Consider a utility function of the general CES form:
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where:
U is the total aggregate utility
xi is the demand for commodity i

i is a share parameter (the sum of which over i needs not be equal to 1)
 is the elasticity of substitution (0 <  < )

The demand functions for xi can be derived from the utility function in terms of
prices, and can be given by the formulas:
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where m is the income level, and pu is the aggregate price, or unit cost, of the
utility, can be given in terms of the individual prices pi of the demands i:
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However, because we also know that the unit cost of the utility is the total
expenditure divided by the utility, we can calculate the unit cost at the Baseline
solution:
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The share parameters i can be obtained from the expression for the expenditure
shares si:
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This relation also holds at the Baseline solution, where we can write:
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One can see that we can choose any nominal value U*  0, and then the Base
price p*

u and the share parameters i can be derived for the utility function.
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2.3 TIMES Objective Function with CES Utility Functions

The CES utility functions described in Section 2.2 can be used for combining
subsets of the TIMES demands into aggregate CES demands. First, one should
just choose a convenient measure for the aggregate utility in the Baseline
solution U0  = U*, and then both the Base price 0

kup for each 0
kU and the share

parameters ki can be derived, to complete the TIMES Micro formulation
supporting also aggregate demands in the form of CES utility functions.

For each aggregate demand k, let us define the values 0
kU  to be equal to the

sum of the scaled component demands DMki in the Baseline solution:
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The full objective function can thus now be written as

bXB

TtIitDMtACTVARts

tUtuctPVFtDMtdctPVFXcMin

k
iik

k t

E
kk

i t

E
ii

T ki

,..,1;,..,1)()(_..

)()()()()()(

,

/11/11

(12)

Here, the constants dci and uck can be calculated as
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The utility functions Uk(t) of course need not be explicitly represented by
variables in TIMES, but can be written out in terms of the component demands:
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The original demands DMi corresponding to the component demands DMki of
each aggregate demand Uk must also be excluded from the set of independently
handled demands DMi in the objective function (12), as indicated in (13).

The Baseline demands )(0 tDM i , the own-price elasticities Ei / Ek, the substitution
elasticities k and the aggregation parameters dagki(t) are all input parameters
defined by the user. The Base prices )(0 tpi  are obtained from the Baseline

solution, and the 0
kup prices and the i parameters are derived from the others.
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3 Linearized Demand Elasticities

3.1 Demand functions with own-price elasticities

Since the terms (DMi(t))1+1/Ei are non-linear expressions and thus not directly
usable in an LP, a linear formulation has been developed for TIMES. The
linearization proceeds as follows (adapted from the TIMES Documentation,
Part I, see Loulou & al. 2016):

a) For each demand category i, and each time period t, the user selects a step
size ßi(t) and number of steps mi and ni, defining the range R(t)i, i.e. the
distance between some values DMi(t)min and DMi(t)max. The user estimates
that the demand value DMi(t) will always remain within the range DMo

i(t) –
mi ßi(t)  DMi(t)  DMo

i(t) + ni ßi(t) even after adjustment for price effects
(for instance, the range could be equal to the reference demand DMo

i(t) plus
or minus 50%).

b) Select a grid that divides each range into a number mi + ni of equal width
intervals. The number of steps should be chosen so that the step-wise constant
approximation remains close to the exact value of the function.

c) For each demand segment DMi(t) define m+n step-variables (one per grid
interval), denoted sm1,i(t), sm2,i (t), …, smm,i(t) and sn1,i(t), sn2,i (t), …, snn,i(t).
Each s variable is bounded below by 0 and above by ßi(t). One may now
replace in the equations (3) and (12) each DMi(t) variable by the sum of the
m-n step variables, and each non-linear term in the objective function by a
weighted sum of the m-n step-variables, as follows:
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Here, the marginal utility coefficients AMj,i and ANj,i for the variables smj,i and
snj,i can be easily calculated from the demand price function at the mid point of
each step j.
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3.2 Demand functions with cross-price elasticities

As one can see from equation (12), we can linearize the aggregate demands
Uk(t) exactly in the same way as the independent demands DMi(t). However, for
linearizing the complete demand functions involving CES utility functions, we
additionally need to linearize the cross elasticities inside each CES aggregate. For
that purpose, we can approximate each aggregate CES demand function by
using an approach very similar to the formulations in Sections 2.3 and 3.1.

First, we define a linearization for the aggregate demand Uk(t), in the same way
as in Equation (15) for individual demands, with own-price elasticity variables:
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The component demands are linearized in proportion to the aggregate demand,
using shares according to the baseline demands, and then adding the
substitution elasticity variables:
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Hence, we can also write Uk(t) in terms of the component demands:
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This relation shows that the aggregate demand equals the sum of the
component demands before substitution. Finally, we need to ensure that
aggregate demand is still satisfied after substitution, taking into account the
utility variation due to the price changes of the component demands. This can be
done by imposing the following balance:
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With respect to the objective function, the price of each demand should be equal
to the marginal utility in the optimal solution. As the own price elasticity of the
CES component demands are equal with the common substitution elasticity
(Ei = k, for i Ik), we can use the same objective terms dci(t)×DMi(t)1+1/E as
those presented in Section 3.1, even though Equation (22) in fact already
guarantees that the sum of utility variations is zero over each group of CES
component demands in the optimal solution. In the linearized case, the com-
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ponent demands DMki of each aggregate demand Uk are thus not excluded from
the set of independently handled demands DMi in the objective function (12).

For the aggregate demand Uk(t), we then only need to include the variation in
the aggregate utility, [Uk(t)1+1/E], due to its own-price elasticity. Consequently,
we can write the linearized terms in the objective function corresponding to
Equation (12) as follows:
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The coefficients AMj,i(t) and ANj,i(t) are defined as shown earlier, and the
coefficients BMj,k and BNj,k are defined in the same fashion for the aggregate
demand Uk(t). In the results, the level of Uk(t) represents the value of the CES
utility function (5), and its marginal represents the aggregate price (7).

Note that in the formulation presented above, we have also assumed that the
bounds for the step variables smj,i(t) and snj,i(t) are now defined in proportion to
the ratio of the aggregate demand )(/)( 0 tUtU kk instead of absolute bounds.

3.3 Customized substitution rates

The linearization presented in Section 3.2 assumes that the price ratios
determine the marginal substitution rates, as in the non-linear CES formulation.
However, in some cases one might want to assume different substitution rates
that better correspond to the physical substitution of the demands in question.

The linearized formulation implemented in TIMES allows two different variants
for supporting such custom substitution rates dagki(t), for which the user should
provide exogenously estimated values:

1. The user-defined substitution rates dagki(t) will be normalized, such that

i
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i
ikik tDMtDMtdagtU )()()()( 000 , and are then applied as multipliers

to the DMi(t) variables in Equation (22), instead of the standard price
ratios 00 /

kUi pp . The resulting demand substitution will then be primarily
based on the user-defined rates, but will still take into account the
changes in the price ratios.

2. Volume preserving substitution, through relaxing (22) but additionally
requiring that insofar as the aggregate demand remains constant, it will
remain equal to the weighted sum of the component demands:
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However, one should note that unlike the implementation of the standard CES
function, neither of these two variants preserve the standard property of
substitution elasticities, which for a pair of two commodities can be written as:
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There are also variants of the CES function, which do preserve both the volume
and the substitution elasticity property (25) (Mensbrugghe & Peters 2016). For
now, such a variant has not been implemented in TIMES, due to the additional
complexities involved in linearizing such a special volume-preserving CES.

4 TIMES User Interface for Demand Functions

4.1 Input parameters

The input parameters for defining the TIMES demand functions are the following:

COM_PROJ(r,t,c):
Defines the demand projection for commodity c in region r and period t
COM_ELAST(r,t,c,s,lim), where lim=LO/UP/FX/N:
Defines elasticities for demand c in region r and period t, timeslice s

o lim = LO/UP :
defines the own-price elasticity in the lower / upper direction in the
linear formulation

o lim = FX (s=ANNUAL) :
defines own-price elasticities in the non-linear formulation;
can also be used for defining the own-price elasticities for the
aggregate demands in the linear formulation

o lim = N (s=ANNUAL) :
defines the substitution elasticity for component demands of the
demand aggregation represented by commodity c; positive values
signify standard variant, negative values volume preserving variant

COM_VOC(r,t,c,bd), where bd=LO/UP:
Defines the maximum demand variation in the lower / upper direction for
demand c in region r and period t
COM_STEP(r,c,bd), where bd=LO/UP:
Defines the number of linearization steps in the lower / upper direction for
demand c in region r
COM_AGG(r,t,c,com):
Defines an aggregation of component demand c into an aggregate
demand com in region r and period t; if defined zero (e.g. by IE=2), the
values will be auto-generated according to the price ratios.
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Important remarks:

COM_PROJ should be explicitly defined by the user only for the component
demands, and never for the aggregate demands.
As mentioned above, the substitution elasticities can be defined by
specifying COM_ELAST(r,t,com,ANNUAL,'N') for the aggregate demands.
However, 'FX' elasticities for the component demands can be optionally
specified for defining component-differentiated substitution elasticities.
Nonetheless COM_ELAST(r,t,com,ANNUAL,'N') always defines the
minimum substitution elasticity among the component demands of com.
Note that the aggregate demands are always at the ANNUAL level only,
and thus only ANNUAL level own-price demand elasticities are supported
for the demand aggregates.
Note that when using the non-linear formulation, only ANNUAL level
substitution elasticities are supported also for the component demands of
the CES aggregates. The demand variations will thus be proportionally the
same for all timeslices.
Multi-level nested CES demand aggregations are also fully supported both
in the non-linear and in the linearized case.
Recursive CES demand aggregations are not supported, neither in the
non-linear nor in the linearized case.
The Cobb-Douglas case ( k=1) is currently handled by setting k very close
to unity in the non-linear formulation.

4.2 Usage Notes

Using elastic demands in TIMES always requires that Base prices for the
demands are available from a Baseline scenario. The Baseline scenario should
thus be run with the following switch:

$SET TIMESED NO

Apart from the COM_PROJ attribute, the input parameters for elastic demands
are only needed in the subsequent policy runs. The elastic demands should be
activated in the policy runs with either one of the two following switches (the
MICRO switch should be used when using the non-linear formulation):

$SET TIMESED YES
$SET MICRO YES

The model generator currently automatically prohibits any demand substitution
elasticities in the Base year, because the Base year is typically a calibrated
historical year, for which the demand prices are also often not well-behaving.

The aggregate demands must be defined to be of type DEM, and the aggre-
gations are defined by specifying the corresponding COM_AGG parameters, as
described above. In other respects, the aggregate demands should be dummy
commodities, i.e. not included anywhere else in the model RES topology. TIMES
may automatically remove from the process topology DEM commodities that can
otherwise be identified as aggregate demands, or may discard them as such.
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When the substitution elasticities should be different among a group of more
than two component demands, there are two approaches available to the user:

1. The user can define a single aggregation group for all of the component
demands, and define differentiated elasticities for the individual com-
ponent demands cd by specifying COM_ELAST(r,t,cd,'ANNUAL','FX') in
addition to the substitution elasticity 0 for the group (see Figure 1). The
resulting demand function will not be a proper CES function.

2. The user can define a nested CES structure for the aggregation of the
component demands, and define differentiated substitution elasticities for
each intermediate aggregation (see Figure 2).  The resulting demand
function will be a proper nested CES function when positive values i are
defined for all of the aggregations and COM_AGG is auto-generated, but
the customized linearized substitution variants can also be used.

Private
car Non-car Buses Urban rail

1 2 3 4

Urban travel

0

Private
car Non-car Buses Urban rail

1 2 3 4

Urban travel

0

Figure 1. Simple demand aggregation structure for urban transport demand.
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engine
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wheeler Metro TramMinibusMulti-axle

Private
car Non-car Buses Urban rail

1 2 3 4

Public travel

6

Private travel

5

Urban travel
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Figure 2. Example nested CES structure for an urban transport demand function.
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5 Discussion

This document describes the original TIMES demand functions and a draft design
for generalizing the demand function formulations. The generalized design aims
to support basic non-linear formulations with demand aggregations defined via
CES utility functions. It also implements a linearized formulation for demand
aggregates that can be used for modeling cross-price elasticities among the
component demands, using either the standard CES substitution rates or
customized rates between the demands.

CES functions are being increasingly implemented in economic models
integrating engineering and bio-physical properties. The drawback of their use is
that they do not preserve additivity, i.e. the sum of the volume components do
not add up to the total volume. For example, in the case of land-use, the sum of
hectares devoted to different crops by a CES function do not necessarily add up
to the total crop-land, and in the case of transportation, the demands allocated
to different modes may not reasonably add up to an aggregate demand for
passenger or goods transport.

Nonetheless, according to the MARKAL reference manual, CES utility functions
could be used e.g. for the aggregate freight and passenger transport. For
example, when used for freight transport the relationship would enable some
substitution between road and rail transport. However, the substitution rates in
the CES aggregates are determined by the price ratios, and so if road and rail
transport have different prices, any substitution would lead to a change in the
total amount of goods transported, even if the aggregate utility would remain
constant. For models that focus on economic aspects, such as the TREMOVE
transport model, the consistency of physical transport volumes may be of less
importance than for TIMES, and nested CES utility functions are thus often used.

Because in partial equilibrium models the costs of road and rail transport may
typically be accounted with different levels of completeness (e.g. infrastructure
costs may be quite unaccounted for rail transport), substitution rates driven
primarily by price ratios may cause a notable bias between the economic and
physical substitution rates. However, the linear formulation supports also user-
defined substitution rates in addition to those determined by the price ratios,
which might to some extent facilitate more realistic modeling of substitution
among e.g. modes of transport. By setting the aggregation rate COM_AGG()=1,
one could force 1 tonne-kilometer of rail transport demand to be substituted for
each 1 tonne-kilometer of road transport demand, thus retaining the physical
volume, unless the total demand decreases due to its own-price elasticity.

All the new generalized formulations have been preliminarily tested and appear
to work as expected. Concerning the CES aggregates, the resulting demand
variations in the linear formulation have been found equal to those obtained with
the non-linear formulation under any combinations of assumed elasticities and
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price changes for the demands (see one set of example results in Table 1 on
next page). The linear formulation thus fully preserves the standard properties of
substitution elasticities (25). However, because the granularity caused by the
linearization of the demand variations would in practice be typically at least 1%,
there will inevitably be some approximation errors due to the coarseness of the
linear formulation. The Baseline solution is, of course, also fully replicated when
using any of the elastic demand formulations without other model changes.

Finally, one should note that so far the CES formulations have been tested with
ANNUAL level demand commodities only, which represents the most commonly
used approach in TIMES models. It is quite possible that the linearized CES
formulation would need a small additional refinements in order to work correctly
with time-sliced demand commodities.
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ANNEX
Table 1.  Results for a test model with k = 0.9 and Ek = –0.4 for all aggregation
groups (Agg-n).
A simple test model was constructed to illustrate the behavior of 9 aggregation groups with
different combinations in the component shares and prices. The price of the first component
demand in each group is raised by 10%, 20% or 35% from the Baseline level, and the resulting
demand levels are then compared between the non-linear and the linearized case. The three
bottom rows show the averages over the demand groups. The grid size of the linearized case was
chosen to be 0.1%. COM_AGG was auto-generated according to price ratios.

Baseline case Non-linear CES formulation Linear CES formulation Difference in demand levels
+10% +20% +35% +10% +20% +35% +10% +20% +35%

Demand Level Price Level Level Level Level Level Level Level Level Level
Dem-1-1 1 1 0.940 0.888 0.823 0.940 0.888 0.823 0.0% 0.0% 0.0%
Dem-1-2 1 1 1.024 1.047 1.079 1.024 1.047 1.079 0.0% 0.0% 0.0%
Agg-1 2 1 1.964 1.935 1.902 1.964 1.935 1.902 0.0% 0.0% 0.0%
Dem-2-1 1 1 0.933 0.875 0.803 0.933 0.875 0.803 0.0% 0.0% 0.0%
Dem-2-2 2 1 2.032 2.062 2.104 2.032 2.061 2.104 0.0% 0.0% 0.0%
Agg-2 3 1 2.965 2.937 2.906 2.965 2.937 2.907 0.0% 0.0% 0.0%
Dem-3-1 2 1 1.895 1.804 1.688 1.895 1.804 1.688 0.0% 0.0% 0.0%
Dem-3-2 1 1 1.032 1.063 1.106 1.032 1.063 1.105 0.0% 0.0% 0.0%
Agg-3 3 1 2.927 2.867 2.794 2.927 2.867 2.793 0.0% 0.0% 0.0%
Dem-4-1 1 1 0.933 0.875 0.803 0.933 0.875 0.803 0.0% 0.0% 0.0%
Dem-4-2 1 2 1.016 1.031 1.052 1.016 1.031 1.052 0.0% 0.0% 0.0%
Agg-4 2 1.5 1.949 1.906 1.855 1.949 1.906 1.855 0.0% 0.0% 0.0%
Dem-5-1 1 2 0.947 0.902 0.844 0.947 0.902 0.844 0.0% 0.0% 0.0%
Dem-5-2 1 1 1.032 1.063 1.106 1.032 1.063 1.105 0.0% 0.0% 0.0%
Agg-5 2 1.5 1.980 1.965 1.950 1.980 1.965 1.949 0.0% 0.0% 0.0%
Dem-6-1 1 1 0.927 0.864 0.787 0.927 0.864 0.787 0.0% 0.0% 0.0%
Dem-6-2 2 2 2.019 2.037 2.062 2.019 2.037 2.062 0.0% 0.0% 0.0%
Agg-6 3 1.67 2.946 2.901 2.849 2.946 2.901 2.848 0.0% 0.0% 0.0%
Dem-7-1 1 2 0.940 0.888 0.823 0.940 0.888 0.823 0.0% 0.0% 0.0%
Dem-7-2 2 1 2.048 2.094 2.157 2.049 2.094 2.157 0.0% 0.0% 0.0%
Agg-7 3 1.33 2.988 2.982 2.980 2.988 2.982 2.980 0.0% 0.0% 0.0%
Dem-8-1 2 1 1.880 1.777 1.646 1.880 1.777 1.646 0.0% 0.0% 0.0%
Dem-8-2 1 2 1.024 1.047 1.079 1.024 1.047 1.079 0.0% 0.0% 0.0%
Agg-8 3 1.33 2.904 2.824 2.725 2.904 2.824 2.725 0.0% 0.0% 0.0%
Dem-9-1 2 2 1.907 1.826 1.722 1.907 1.826 1.722 0.0% 0.0% 0.0%
Dem-9-2 1 1 1.039 1.076 1.128 1.039 1.076 1.128 0.0% 0.0% 0.0%
Agg-9 3 1.67 2.946 2.902 2.850 2.946 2.902 2.850 0.0% 0.0% 0.0%
Aver-1 1.33 1.33 1.256 1.189 1.104 1.256 1.189 1.104 0.0% 0.0% 0.0%
Aver-2 1.33 1.33 1.363 1.391 1.430 1.363 1.391 1.430 0.0% 0.0% 0.0%
Agg-Aver 2.67 1.33 2.619 2.580 2.534 2.619 2.580 2.534 0.0% 0.0% 0.0%


