Biomass Co-firing in Coal Power Plants

INSIGHTS FOR POLICY MAKERS

Biomass co-firing consists of combusting biomass and fossil fuels, mostly coal but also natural gas, in the same power plant. In most cases, biomass co-firing in coal power plants takes place by mixing biomass with coal before the burners, but biomass can also be gasified and burned in separate burners, after which the gaseous fuel or steam is mixed with the boiler streams of the coal-fired power plant. The advantage of biomass co-firing is that it reduces greenhouse gas emissions from coal-fired power and enables power generation from biomass with the high efficiency achieved in modern, large-size coal-fired power plants, which is much higher than the efficiency of dedicated, 100% biomass power plants. The total energy efficiency can be increased even further if biomass co-firing takes place in combined heat and power (CHP) plants. The other advantage of biomass co-firing is that the incremental investment for burning biomass in coal-fired plant is significantly lower than the cost of dedicated biomass power. At present, co-firing projects in coal-fired power plants exceed the biomass capacity of dedicated biomass plants.

The costs of biomass acquisition and transportation determine to a large extent the economic feasibility of co-firing. The acquisition costs depend on possible competition with other biomass energy uses (biofuels) or non-energy applications. A stable and cheap flow of biomass is needed to sustain a biomass co-firing project. The biomass feedstock can be sourced from residues or waste streams from forestry, agriculture, pulp and paper, and sugar industries, or from dedicated energy crops (e.g. short-rotation coppices). Local availability of large quantities of cheap biomass makes biomass co-firing more economically attractive. If local sources are not sufficient, high energy-density, pre-treated biomass (e.g. wood pellets) can be used. In these cases, long-distance transportation and logistics (e.g. an inland harbour) play an important role on the economic viability. In developing countries, the use of waste streams from agriculture and forestry may also create additional value and job opportunities, and contribute to the rural development.

Coal-fired power stations that provide both power and heat to district heating networks (such as in Northern Europe) or even industrial facilities may significantly increase the efficiency and the economics of biomass co-firing. Appropriate policies are needed to seek an efficient use of the available biomass resource by encouraging the use of co-firing in connection with CHP wherever suitable. Policies should also take into account the co-benefits from the use of agricultural residues or demolition waste, which would otherwise constitute a disposal challenge.

Biomass co-firing has an enormous potential for reducing the CO2 emissions as biomass can replace between 20% and 50% of coal. However, the net reduction of CO2 emissions and other pollutants depend to a high degree on biomass feedstock’s origin and supply chain. In addition, a high percentages of biomass co-firing may reduce efficiency and power output. Nevertheless, the substituting of only 10% of coal in the current installed coal-fired electrical capacity would result in about 150 GW biomass power capacity, which is 2.5 times the current globally installed biomass power capacity.

Biomass co-firing can be considered as a transition option towards a completely carbon free power sector. Several European countries and American States already offer policy incentives or have mandatory regulations to increase the renewable share in the electricity sector, which support the use of biomass co-firing, and most biomass co-firing projects takes place in these countries. The Clean Development Mechanism (CDM) recognises biomass co-firing as a way to reduce CO2 emissions in developing countries. However, to exploit the co-firing potential with no environmental impact urgent measures and technology preparation are needed in emerging economies such as India and China, where coal-fired power capacity is rapidly growing and large sources of biomass are available. The indicators developed by international organisations to measure the sustainability of bio-energy (including protection of soil and water resources, bio-diversity, land allocation and tenure, and food prices) need to be integrated into the policy measures.
Biomass Co-firing in Coal Power Plants

TECHNICAL HIGHLIGHTS

- **Process and Technology Status** - Biomass co-firing consists of burning biomass along with coal in coal-fired power plants. Co-firing can play an important role to increase the use of biomass in power generation and reduce the emissions of greenhouse gases (GHG) because only a relatively modest incremental investment is needed to retrofit existing coal plants or build new co-fired plants. Compared to power plants burning 100% biomass, co-firing offers several advantages including lower capital costs, higher efficiency, improved economy of scale and lower electricity costs due to the larger size and the superior performance of modern coal power plants. At present, some 230 power and combined heat and power (CHP) plants use co-firing, mostly in North Europe and the United States, with a capacity from 50 to 700 MWe. Co-firing in CHP plants is currently the most competitive option to exploit the biomass energy potential for both electricity and heat production. Biomass feedstocks include forestry and agriculture residues, animal manure, waste, and dedicated energy crops. Co-firing technologies include: 1) **direct co-firing**, using a single boiler with either common or separate burners (i.e. the simplest, cheapest and widespread approach); 2) **indirect co-firing**, where a gasifier converts solid biomass into a gaseous fuel; and 3) **parallel co-firing**, where a separate boiler is used for biomass, and its steam generation is then mixed with steam from conventional boilers.

- **Performance and Costs** - The net electric efficiency of a co-fired coal/biomass power plant ranges from 36% to 44%, depending on plant technology, size, quality and share of biomass. While a 20% co-firing (as energy content) is currently feasible, and more than 50% is technically achievable, the usual biomass share today is below 5%, and rarely exceeds 10% on a continuous basis. A high biomass share means lower GHG emissions. It is estimated that 1% to 10% biomass co-firing in coal power plants could reduce the CO₂ emissions from 45 to 450 million tons per year by 2035, if no biomass upstream emissions are accounted for. However, high biomass shares involve technical issues, such as securing sufficient biomass and potential combustion problems such as slagging, fouling (which reduces heat transfer) and corrosion. The overall cost of co-firing is sensitive to the plant location and the key cost element is the biomass feedstock. The investment cost for retrofitting a coal-fired power plant for co-firing is in the range of USD 430-500/kW for co-feed plants, USD 760-900/kW for separate feed plants and USD 3000-4000/kW for indirect co-firing. These costs are still significantly lower than the costs of dedicated, 100% biomass power plants. The biomass fuel costs depend on the biomass type, volume traded, and geographic location. The costs for globally traded biomass pellets is around EUR 12/MWh higher than the costs of coal. Advanced pelletisation and – in the near future: torrefaction - can increase the energy density of biomass, reduce transportation cost, and improve storage behaviour. Taking into account all cost components and assuming a discount rate of 7%, a typical levelised electricity cost for biomass co-firing ranges from USD 22/MWh to USD 130/MWh, with the actual cost depending on assumptions about location, biomass type, co-firing technology, and plant capacity factor.

- **Sustainability, Potential and Barriers** - The substitution of 10% of the global coal-fired capacity by co-firing would result in about 150 GW biomass capacity. For comparison, today's co-firing capacity is estimated at between 1 and 10 GW (the uncertainty is associated with the actual biomass share in co-firing plants) and the total installed biomass capacity amounts to some 62 GW (2010). Therefore, a large co-firing potential exists, but a strong increase would pose the problem of the availability of biomass, which can also be used for biofuels and biomaterials production. While estimates of biomass resources vary greatly, realistic assessments should only account for sustainable biomass, i.e. resources which neither compete with food production nor involve land-use changes with negative impacts on environment and climate. On this basis, the IPCC estimates a global sustainable biomass energy potential of 100 to 300 EJ per year, mostly based on agriculture and forestry residues and ligno-cellulosic feedstock. The energy use of biomass can add value to the forestry and agriculture sectors of developing and emerging countries. Recently, biomass production and trading from Latin America, Africa and Asia has increased significantly (i.e. 75 PJ in 2009), although long-distance transportation reduces the benefit of using biomass. In addition, international co-operation is needed to ensure the sustainability of biomass production. The Global Bioenergy Partnership (GBEP) and other organizations are in the process of finalizing indicators as well as certification processes to ensure the sustainability of biomass production. Biomass co-firing based on residues and wastes has been recognized by the UNFCCC as a technology to mitigate GHG emissions so that countries can sell carbon credits associated with their co-firing projects. Other policies to support co-firing include CO₂ emission trading schemes (e.g. the European ETS), the removal of fossil-fuel subsidies, incentives for converting power plants into co-fired CHP plants, and mandatory co-firing quota schemes. Supporting policies are in place in EU countries (Austria, Denmark, Finland, the Netherlands, Sweden and the United Kingdom,) and the United States. Emerging economies with large production of agricultural waste and coal-based electricity (e.g. China and India) are also well positioned to implement co-firing.

Please send comments to Philippe Lempp (plempp@irena.org), Author, and to Giorgio.Simbolotti@enea.it, Giancarlo Tosato (gct@etsap.org) and Dolf Gielen (dgielen@irena.org), Project Co-ordinators
PROCESS AND TECHNOLOGY STATUS

Biomass co-firing consists of burning biomass along with fossil fuels in coal- and gas–fired power plants. (ETSAP E01, E02). This brief deals with biomass co-firing in coal power plants, which is by far more widespread and extensively proven than biomass co-firing in gas-fired plants1. Co-firing can play an important role in increasing the share of biomass and renewable sources in the global energy mix and reducing the greenhouse gas (GHG) emissions (ETSAP 05; IEA 2010). A relatively low investment is needed to adapt or retrofit existing conventional coal power plants for biomass co-firing, or to build new power plants which are specifically designed for co-firing.

Co-firing biomass in coal-fired power plants offers advantages with respect to using biomass in dedicated power plants. Advantages include higher efficiency (as modern coal power plants are more efficient than smaller-scale dedicated biomass power plants), lower sulfur emissions (due to biomass combustion), lower costs (due to the larger size of coal power plants), and no need for continuous biomass supply because the plant can burn coal if biomass is not available. However, the use of two different fuels increases the complexity of power generation from both technical and regulatory point of view.

Co-firing activity is not easy to track as individual plants may change the quantity and type of used biomass, and may use co-firing either on experimental or commercial basis (Platts, 2011b). In its database, Platts counts almost 230 power plants that use, or have used or announced to use, some type of biomass with coal as the main fuel2. A previous count (2009) by the IEA Bioenergy Implementing Agreement identifies globally some 150 plants using coal or lignite along with biomass3 (IEA Bioenergy Task 32, 2009a). The majority of these plants are located in Northern Europe and in the United States, with some units in Asia and Australia. Most of them are combined heat and power (CHP) plants, and numerous produce only electric power. Their capacity ranges from 50 MWe to 700 MWe. Most plants are operated by utilities, but industry also plays an important role, especially in sectors such as pulp and paper and wood processing.

Biomass feedstock includes forestry and agriculture residues (e.g. sugar cane bagasse), animal manure, wastes such as sawdust or bark from timber industry, waste wood, and dedicated energy crops (e.g. short-rotation coppices). The sources vary greatly between countries, depending on the local natural endowment, the industrial potential, and the biomass energy use.

Handling and combustion characteristics of vegetal biomass can be strongly improved through pelletisation, and torrefaction. Pelletisation is a process to physically densify fine wood particles such as saw dust into compact, low-moisture and low-eroding capsules by applying pressure, and heat. Advanced (“black”) pellets can also repel water, thus improving logistics and storage options. Torrefaction consists of biomass heating in the absence of oxygen, thus creating a charcoal-like substance with reduced moisture, small particle size, minimal biological degradation, and increased energy density. After torrefaction, biomass can be milled and compressed to very dense pellets or briquettes. Torrefaction plants require significant capital costs (and large feedstock availability to compensate for the investment), but are expected to have lower operational costs than pelletisation plants (Kiel 2011). There are currently more than 10 demonstration plants on their way. Furthermore, research institutes around the world are working on the improvement and standardisation of biomass pellets in terms of energy density, humidity, environmental properties, durability, and the entire production process, from the raw material to storable pellets.

As for the regional use of different biomass feedstock, bagasse is used as an alternative fuel along with coal in developing countries and regions with a large sugarcane production such as Mauritius, La Réunion, Guatemala, Guadeloupe, India, Dominican Republic (Platts, 2011a; ISO 2009), while countries such as Malaysia and Thailand have explored the use of rice husks. Other countries, like Brazil, have significant bagasse cogeneration capacity (7.3 GW in 2011), but do not combine biomass with fossil fuels (REN21 2011; ISO 2009).

Co-firing Technologies – Co-firing includes 3 major technologies:
- **Direct co-firing** is the simplest, cheapest and most common option. Biomass can either be milled jointly with the coal (typically less than 5% in terms of energy content) or pre-milled and then fed separately into the same boiler. Common or separate burners can be used, with the second option enabling more flexibility with regard biomass type and quantity.
- **Indirect co-firing** is a less common process where a gasifier converts the solid biomass into a fuel gas that is then burnt with coal in the same boiler. Tough more expensive because of the additional technical equipment (the gasifier), this option allows for a greater variety and a higher percentages of biomass to be used. Gas cleaning and filtering is needed to remove gas impurities before burning, and the ashes of the two fuels stay separate.
- **Parallel co-firing** requires a separate biomass boiler which supplies steam to the same steam cycle. This method allows for high biomass percentages and is frequently used in pulp and paper industrial facilities.
Co-firing more than 20% of biomass in terms of energy content is technically feasible today (IEA Bioenergy Task 32, 2009b). Depending on the plant setup and the chosen co-firing technology, substitution of more than 50% of coal can also be achieved (DENA, 2011; Vattenfall 2011). However, in most cases co-firing levels are below 5%, and exceed 10% on a continuous basis only in about a dozen coal-fired plants worldwide (IEA Clean Coal Centre, 2012). The co-firing mix also depends on the type of boiler available. In general, fluidised bed boilers can substitute higher levels of coal with biomass than pulverised coal-fired or grate-fired boilers (Leckner 2007). However, pulverised fuel combustion is much more widespread and in some specific pulverized coal-fired installations a 100% conversion from coal to biomass has been demonstrated. (IEA Bioenergy Task 32, 2009b). In the Netherlands and in the United Kingdom, the full conversion of large coal-fired power plants to 100% biomass has been considered. However, logistical and economic constraints limit the conversion to a few plants with suitable infrastructure (cf. availability and cost of feedstock, see below).

Biomass co-firing is more cost-effective in combined heat and power plants (CHP, ET SAP E04) which produce useful heat in addition to power. CHP is often used in industrial facilities where there is specific demand for both heat and power, or in combination with district heating networks. Since CHP plants offer a higher overall efficiency than power plants, they also magnify the economics of biomass co-firing.

TECHNOLOGY PERFORMANCE

Efficiency of Biomass Co-firing - Overall, the net electric efficiency of a coal/biomass co-firing plant typically ranges from 35% to 44% (ET SAP, 2010b; IEA 2012) depending on plant technology, size, and the specific biomass feedstock. Direct co-firing results in slightly higher efficiencies (around 2% points) than indirect and parallel co-firing, because of the conversion losses in the biomass gasifiers and boilers (ECN 2012a). The overall efficiency of direct co-firing reduces with higher percentages of biomass due to fouling and slagging, associated corrosion, especially in pulverized coal-fired or grate-fired boilers (IEA Bionergy Task 32, 2009b; IRENA 2012). The overall efficiency of direct co-firing in coal-fired power plants with fluidised bed boilers is less sensitive to higher levels of biomass, although high levels will also require more sophisticated boiler and fuel handling control systems. Furthermore, fluidized beds can handle biomass with larger particle size (<72mm instead of <6mm), and higher moisture content (10-50% instead of <25%) than pulverised boilers (IRENA 2012). However, in general co-firing in modern, large and highly-efficient coal power plants results in a biomass conversion efficiency that is significantly higher than can be achieved in small-scale (<10 MW), and medium-scale (10-50MW) dedicated biomass power plants with efficiencies of 14-18% and 18-33%, respectively (Baxter, 2005; IPCC, 2011; IEA 2012). Apart from the higher efficiency, the economy of scale of large power plants will also lead to lower the cost of the energy provided per unit of biomass fuel used.

GHG Emissions and Environmental Impact – Biomass co-firing offers a comparatively low-cost way to reduce greenhouse gas (GHG) emissions5. As the combustion of biomass is considered carbon neutral (i.e. the CO2 released in the process was withdrawn from the atmosphere by photosynthesis during the plant’s growth6), co-fired power plants release less net GHG emissions than conventional power plants. The cost of the avoided emissions is relatively low because the incremental investment costs for retrofitting or building new co-fired power plants is modest in comparison with other options to reduce power generation emissions. If combined with carbon capture and storage (CCS) technologies, biomass co-firing results in negative GHG emissions (i.e. net removal of CO2 from the atmosphere), which is also referred to as “biogenic carbon sequestration”7. Assuming an average level for CO2 emissions from coal combustion of 95 kg/GJ8, and a market development according to the IEA “New Policies Scenario” (IEA World Energy Outlook, IEA 2011), it is estimated that the CO2 emissions in 2035 could be reduced by between 45 and 450 million tons per year if a 1% to 10% of the coal fuel input was replaced by biomass. This estimate assumes that upstream emissions of biomass supply are negligible, but the supply chain also involves GHG emissions.

While biomass co-firing can reduce the net GHG emissions of coal plants, other polluting emissions deserve a specific assessment. Co-firing typically reduces sulphur dioxide (which lead to acid rain) and other harmful emissions as compared to coal, but the extent of such reductions depend strongly on the specific biomass feedstock, plant technology and operation (Al-Mansour and Zuwala J., 2010). For example, using treated wood waste as fuel – e.g. from furniture or demolition – may require filtering of toxic gases, ash decontamination or special design of the

5 A recent study by the German Energy Agency DENA suggests CO2 avoidance costs of 27–54 EUR/t CO2eq in coal-fired plants and 52–89 EUR/t CO2eq in lignite plants (the difference stems mainly from the fact that lignite is cheaper) (DENA, 2011).

6 While the combustion of biomass can be considered as carbon neutral, overall GHG balance of the biomass provision (i.e. pre-combustion supply chain) depends on many factors such as processing, transport modes and distances, and – in the case of dedicated energy crops – on cultivation/harvesting, and possible land use change effects.

7 It should be noted, however, that CCS leads to efficiency losses. For more information on BioCCS, see e.g. European Biofuels Technology Platform at http://www.biofueltep.eu/bio-ccs-jtf.html

8 Actual emission factors for coal combustion vary particularly depending on the type of coal, cf. 2006 IPCC Guidelines for National Greenhouse Gas Inventories.

4 For a more detailed discussion on the different boiler technologies for biomass, see IEA ET SAP 2010b.
combustion systems to deal with chemicals contained in wood coatings, glues or preservatives. The reduction of biomass particulate emissions may require attention if co-firing occurs in smaller-scale power plants with no desulfurization and low-efficient particulate filters, which usually traps fine particles.

In terms of water consumption, the impact of biomass co-firing depends on biomass type and growth conditions. In many cases, co-firing can positively impact the water use in coal-fired power plants, e.g. if waste is used as the feedstock (IEA, 2010).

CURRENT COSTS AND COST PROJECTIONS

At present, co-firing in state-of-the-art combined heat and power plants is considered the most cost-effective option of producing electricity from biomass. Determining the overall cost for biomass co-firing in coal-fired power and CHP plants requires analysis of several components, particularly costs of investment, operation and maintenance, and fuel. It must be noted that the actual costs is very sensitive to the specific site and the existing installation (if any), which determine the investment costs as well as costs of the coal and biomass to be used (Power Generation University, 2011). The fuel cost is the most important factor when considering the additional costs for co-firing.

The **investment cost** depends on plant capacity and service (i.e. power generation only or combined heat and power) as well as the type of the biomass fuel to be used, and the quality of the existing boiler (if any). The costs of retrofitting an existing coal-fired power plant to enable biomass co-firing are typically in the range of USD 300-700/kW for co-fed plants (IPCC 2011; IEA 2012; IRENA 2012) with European estimates around £200/kW or €220/kW (Mott McDonald 2011; ECN 2012a). Separate feed plants cost around USD 760-900/kW (IPCC, 2011). These low investment costs compared to dedicated biomass power plants are the consequence of pre-existing large coal-fired power plants and related infrastructure. Investment costs for indirect co-firing are around USD 3000-4000/kW (about 10x higher than direct co-firing (ECN 2012b)), however this method allows for the use of cheaper waste fuels with impurities.

The **operation and maintenance (O&M) cost** are likely to be similar to coal-fired power plants (5-10 USD/MWh), as co-firing increased fuel handling costs but reduces desulfurization costs and ash disposal costs (Mott McDonald 2011). Typical O&M costs around 2.5-3.5% of capital costs for direct co-firing (IRENA 2012), and around 5% for indirect co-firing (ECN 2012b). In general, it scales up when the biomass to coal ratio increases, and the quality of the biomass used decreases.

The **biomass fuel cost** consists of two components: the cost of the feedstock and the cost of transportation, preparation and handling.

Feedstock costs vary greatly with the biomass origin (e.g. dedicated cultivation or agriculture and forestry waste), type and composition (i.e. energy and moisture content). A recent IRENA study provides feedstock cost data for a range of locally available biomass resources in the United States, Europe, Brazil, and India (IRENA, 2012). These costs range from USD 0-11/MWh for bagasse in Brazil and India to USD 6-22/MWh for agricultural residues in the United States and Europe.

For large scale co-firing, operators need to turn to inherently more expensive dedicated energy crops (e.g. short rotation coppices) or international biomass trade, if the regional infrastructure allows for this option. Particularly over long distances, the transportation costs depend to a large extent on the energy density (heating value) of the biomass fuel. Biomass pelletingisation is a way to significantly increase the heat value per volume of biomass. Over the last four years 10, prices of industrial pellets fluctuated between EUR 24/MWh and EUR 30/MWh, which is around EUR 12/MWh more than the cost of coal (Hawkins Wright, 2011).

Taking both components into account, large scale biomass co-firing would typically exceed the cost of coal. In Germany, DENA (2011) assumes a premium of EUR 12/MWh on top of coal, with future premiums ranging between 0 and EUR 20/MWh in 2030, depending on coal prices. However, this price difference can be overcome if the price of CO2 emission allowances is sufficiently high.

The **levelised cost of electricity (LCOE) for biomass co-firing**, which takes into account the above-mentioned cost components, varies widely. The IPCC suggests a range from USD 22/MWh to USD 67/MWh at a discount rate of 7%, where the actual price will depend strongly on the fuel cost (assumed range between 0 and 18 USD/MWh), the investment costs (430-900 USD/kW), and the plant capacity factor (70-80%), among other factors (IPCC, 2012). The IEA suggests a range of LCOE between USD 80-120/MWh based on feedstock costs between USD 29-43/MWh (IEA 2012), while IRENA suggests a range between USD 44-130/MWh (IRENA 2012).

SUSTAINABILITY, POTENTIAL AND BARRIERS

While co-firing seems to be at present one of the most efficient options to exploit biomass for energy use, its sustainability and potential are closely linked together and depend on the overall sustainability of the biomass resources. In 2009, the global coal-fired electricity generation capacity was around 1580 GW (IEA, 2010).

10 CIF prices according to PIX Pellet Nordic Index Baltic/North Sea and APX-ENDEX Amsterdam-Rotterdam-Antwerp. Assumed calorific value of 4.8 MWh/t (cf. FOEX Indexes Ltd, 2011).

9 Incl. facilities for fuel handling and preparation, boiler modification, contingency, taxes, fees and more.
2011)11, producing about 42% of the world’s electricity production (IEA ETSAP, 2010a) and emitting 8.56 Gt of CO\textsubscript{2}. The substitution of 10% of this coal power capacity would allow for some 150 GW biomass power capacity (i.e. about 2.5-times the current installed biomass power capacity) and reduce the CO\textsubscript{2} emissions by some 0.5 Gt per year. Since statistics on the current use of co-firing are uncertain, an indicative assumption of 1% to 10% co-firing in some 200 power plants (with an average capacity of 500MW) leads to 1 to 10 GW of co-firing capacity and suggests that the currently exploited co-firing potential is in the single-digit percentage range.12

The actual technical potential for co-firing will depend very much on what will happen with coal-fired power stations. In several European countries, the share of coal will decline therefore reducing the potential for biomass co-firing. However, globally the use of coal for power generation is projected to increase (e.g. IEA, 2011) – though some studies also project a possible decline, e.g. EREC/Greenpeace, 2010 –, which means that the commercial potential will depend on local biomass costs, the costs of globally traded biomass pellets, and local policies to reduce the GHG emissions.

In 2010, the use of biomass for power and heat generation has reached the level of 62 GW of power capacity and 280 GWh$/y$ of heating capacity worldwide (REN21, 2011). This includes the use of solid, liquid and gaseous biomass in dedicated biomass power and CHP plants as well as co-firing. A strong increase in biomass co-firing poses the questions of the sustainability and availability of the feedstock supply, which could also be used for the production of biofuels and bio-ethylene (ETSAP P10, I13). Depending on assumptions about agricultural and forestry residues, future crop yields, land availability for energy crops, demographic expansion and population diet, estimates of the bio-energy resource potential vary in a wide range (IC 2011). Some studies support the position that because of competing demand between food production, energy and industrial uses, no expansion potential exists for energy production from biomass. Others studies see a theoretical potential of up to 1500 EJ per year (please note that the current global primary energy supply is in the order of 510 EJ per year). Of course, realistic assessments should only include sustainable biomass resources, i.e. biomass and associated land-use that cannot be used for food production and are compatible with a sustainable use of land from the environmental and climate point of view. On this basis, the IPCC special report on renewable energy identified a deployment potential for biomass energy use in the range of 100 to 300 EJ per year, mostly based on ligno-cellulosic feedstock, residues and biomass that are not in competition with other primary needs. The estimate includes power and heat generation (including co-firing) and production of biofuels (IPCC, 2011). Exploiting a significant part of this potential would anyway require a tremendous effort and the need to resolve the duality between heat & power and biofuels.

\section*{Potential for developing countries -} Co-firing offers advantages for emerging and developing countries as the use of waste form forestry and agriculture will increase the economic value of these sectors, which are usually strong components of the economy in these countries (IEA Bioenergy, 2009). Instead of being burned on fields, as commonly done, agricultural waste could be used profitably in co-firing power-plants.13 However, the international cooperation is needed to ensure the environmental and social sustainability of biomass exploitation, e.g. guarding against land-grabbing or deforestation, biodiversity loss in connection with large-scale monoculture, etc.). Of key importance is that biomass co-firing has been recognized as a mitigation technology by the UNFCCC, and countries can sell carbon credits associated with their co-firing projects. Also important is biomass trading, which is increasing very fast driven by high fossil fuel prices and policies to reduce the GHG emissions. While almost no woody biomass was traded in 2000, the global 2009 net trade of woody pellets amounted to about 75 PJ (IEA Bioenergy, 2011b). Expectations are that up to 5% of total biomass use in 2020 could be sourced by international trade, with North America, Africa, Brazil and Russia as the major suppliers (WEF, 2011). International trading however implies transportation and energy consumption, thus reducing the benefit of the use of biomass.

\section*{Sustainability guidelines and certification -} The Global Bioenergy Partnership (GBEP) has recently completed a set of 24 indicators to measure the sustainability of bioenergy (GBEP, 2011). These cover environmental, social and economic aspects (e.g. soil protection, water resources, biological diversity, land allocation, food prices, energy access, infrastructure, training of workforce). Similarly, the World Bioenergy Association uses 15 sustainability criteria as the basis for their verification scheme of biomass sustainability. The Bioenergy and Food Security Criteria and Indicators project (BEFSCI) of the United Nations Food and Agriculture Organisation (FAO) has made a compilation of bioenergy sustainability initiatives14. Certification schemes can help safeguard against unsustainable practices e.g. in the energy forestry sector. The IEA bioenergy implementing agreement has produced an overview of bioenergy certification initiatives (IEA Bioenergy, 2011c).

11 The IEA uses a global capacity factor for coal of almost 60%12 Please note that this indicative illustration of the technical co-firing potential disregards factors constraining the actual potential, particularly biomass resource availability, the actual co-firing retrofitting potential of existing coal power plants, which depends on the age of the facility, the basic efficiency, the existing boiler and the load factor (cf. below or Hansson et al. 2010).

13 If agricultural and forest residues are extracted, the issues of nutrient and soil organic carbon balances must be addressed. With regard to forest residues, impacts on biodiversity also need consideration.

14 See http://www.fao.org/bioenergy/foodsecurity/befsci/62379/en/
On the industry side, the European Pellet Council in collaboration with the Wood Pellet Buyers Initiative recently launched its “ENplus” certificate to support standardisation for pellets used in Europe, both locally produced and imported. More than 30 producers and 40 traders have so far been certified, with several others in the pipeline (as of 13 December 2011). The scheme is expected to expand and include also sustainability criteria (“ENplus GREEN”; Ryckmans 2011; European Pellet Council, 2011, personal communication). Similar wood pellet certification schemes are being developed in the United States, and by the Technical Committee on Solid Biofuels of the International Organization for Standardization (ISO).

Policies and Incentives to Support Co-firing –
Consider today’s prices of coal and biomass, co-firing is generally more expensive than solely coal-based power generation or CHP. The competitiveness of biomass co-firing can be improved through measures to make coal-based energy more expensive, particularly carbon pricing through emission cap-and-trade schemes or carbon taxation. Based on today’s carbon prices, the current incremental cost of co-firing cannot be fully recovered by selling emission permits, but the new European Emission Trading Scheme (ETS) in 2013 is likely to increase co-firing competitiveness and pellets use in Europe as large emitters (e.g. coal power plants owners) are subjected to auctioning their CO₂ allowances (Fritsche 2011; VITO et al. 2011). Other measures to increase the profitability of biomass co-firing include the removal of specific fossil-fuel subsidies, incentives for the conversion of power plants into CHP plants, government support to biomass supply infrastructure, and dedicated funding to R&D on co-firing.

Governments can also establish mandatory use of biomass co-firing by quota obligation schemes. For example, the European Union has established mandatory renewable energy share for Member States to be achieved by 2020 (RED, Directive 2009/28/EC). In order to fulfill this obligation, the EU Member countries can adopt a range of policies. In Denmark for example, a quota-like system is in place to encourages utilities to use biomass, mostly from straw and the rest from woody feedstock (FORCE Technology, 2009). In the United Kingdom, biomass co-firing contributes to reaching mandatory renewable energy quotas, with a 2012-2013 target of 1.04 million renewable obligation certificates, equivalent to 1.04 TWh (DECC, 2011). In the Netherlands, policy is moving from a fixed governmental support to utilities in the order of EUR 60-70/MWh to a mandatory supplier obligation to be introduced by 2015. In Germany, utilities have requested policy support through the German Renewable Energy Act (EEG) to expanding co-firing activities (DENA, 2011) since co-firing is not currently competitive. The German government however, is not considering new legislation for co-firing (Deutscher Bundestag, 2011).

In the United States, Renewable Energy Portfolio Standards exist in several states and co-firing is increasingly attractive to utilities. In Australia, the lack of specific incentives is seen as the main reason behind what is perceived as a delay in implementing co-firing technology in comparison with Europe (RIRDC, 2011). In China, in spite of massive coal power deployment and large biomass resources (crops, forestry and woody residues amount to an equivalent of 400 million tonnes of coal per year), co-firing is not widespread used because of the limited experience with biomass power generation (Wang 2011) and the exclusion of co-firing from the incentives (e.g. generation allowances) granted to other biomass-based power options. (Minchener, 2008). Other emerging economies producing large amounts of agricultural residues and heavily relying on coal power (e.g. India) are also well positioned to implement co-firing.

Policies should seek the most efficient use of the given biomass potential by encouraging co-firing in CHP plants where district heating systems are available (e.g. in Northern Europe) and in connection with industrial facilities. The benefits from burning waste that would otherwise constitute a disposal challenge should also be considered.

Technical barriers to co-firing are the local availability of large amounts of quality biomass as well as the cost of collection, handling, preparation and transportation, in comparison with the relatively low cost of coal. From a technical point of view, the risk of slagging, fouling, erosion and corrosion associated with the use of biomass can be countered by choosing appropriate co-firing technologies and feedstock. For example, most issues arise in direct co-firing with no dedicated infrastructure, too high biomass share and poor quality (Maciejewska et al., 2006).
References

7. Deutscher Bundestag (2011), Mitverbrennung von holzartiger Biomasse in Kohlekraftwerken, Antwort der Bundesregierung, Drucksache 17/8037,
10. ECN (2012b), Co-firing low cost fuels using indirect gasification. The economics of indirect gasification. Presented at Cleanwater Clean Coal Conference, Florida, USA, 3-7 June 2012
15. FORCE Technology (2009), Pellet market country report – Denmark, FORCE Technology, Kongens Lyngby, July 2009
20. IEA Bioenergy (2009a), Bioenergy – a Sustainable and Reliable Energy Source, 2009
23. IEA Bioenergy Task 32 (2009a), Technology Brief E09 – April 2010
25. IEA Bioenergy Task 32 (2009c), Summary and conclusions from IEA Bioenergy Task 40 country reports on international bioenergy trade, Utrecht, April 2011
30. Platt (2011a), UD1 World Electric Power Plants Data Base (WEP), Platts Washington, DC, December 2011

Please send comments to Philippe Lempp (plempp@irena.org), Author, and to Giorgio.Simbolotti@enea.it, Giancarlo Tosato (gct@etsap.org) and Dolf Gielen (dgielen@irena.org), Project Co-ordinators
38. Minchener (2008), The development of co-firing power generation market opportunities to enhance the EU biomass sector through international cooperation with China, final report, IEA Environmental Projects Limited and Tsinghua University, 2008
39. Mott MacDonald (2011), Biomass conversion of coal plant. Commissioned by the Committee on Climate Change, 11 October 2011
47. VITO/Oeko-Institut/TU Vienna/Utrecht University/ETA Florence/REC (2011), Benchmarking biomass sustainability criteria for energy purposes; study carried out for EC DG ENER under contract ENER/C1/495-2009/SI2.572581; Mol

Further Information Sources

Additional information sources not included in the references section
<table>
<thead>
<tr>
<th>Technical Performance</th>
<th>Typical current international values and ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy input(16)</td>
<td>Wood chips (+coal)</td>
</tr>
<tr>
<td>Output</td>
<td>Electric Power, or combined heat and power (CHP)</td>
</tr>
<tr>
<td>Water content (%)</td>
<td>35-50</td>
</tr>
<tr>
<td>Density (kg/m(^3))</td>
<td>314-408</td>
</tr>
<tr>
<td>Energy density (MWh/m(^3))</td>
<td>0.3-0.6</td>
</tr>
<tr>
<td>Technology Variant</td>
<td>Direct co-firing</td>
</tr>
<tr>
<td>Energy efficiency</td>
<td>35-42% / 44-85% with CHP</td>
</tr>
<tr>
<td>Lifetime, yrs</td>
<td>30+</td>
</tr>
<tr>
<td>Capacity factor, %</td>
<td>From 20% to 100%, but typically between 60-80%</td>
</tr>
<tr>
<td>Typical plant size, MW</td>
<td>10 - > 1000</td>
</tr>
<tr>
<td>GHG Emissions (emitted/avoided)</td>
<td>lignite co-firing: 950-1100 gCO(_2)av/KWhe for local biomass, 800-950 gCO(_2)av/KWhe for imported biomass coal co-firing: 900-1000 gCO(_2)av/KWhe for local biomass, 720-880 gCO(_2)av/KWhe for imported biomass</td>
</tr>
<tr>
<td>Other pollutants</td>
<td>On average, 15% NO(_x) emissions reductions with 7% co-firing</td>
</tr>
<tr>
<td>regional implementation</td>
<td>Mostly North America/Europe</td>
</tr>
<tr>
<td>Market share</td>
<td>Low</td>
</tr>
</tbody>
</table>

Costs

<table>
<thead>
<tr>
<th>Technology Variant</th>
<th>Typical current international values (2010 US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment cost, USD/kW</td>
<td>Direct</td>
</tr>
<tr>
<td>O&M cost, % of investment per year</td>
<td>2.5-3.5% of capital costs</td>
</tr>
<tr>
<td>Biomass fuel energy cost - waste, Euro/MWh</td>
<td>Variable (na)</td>
</tr>
<tr>
<td>Biomass fuel energy cost – crops, Euro/MWh</td>
<td>24-30</td>
</tr>
<tr>
<td>Levelised cost of electricity, USD cents/kWh</td>
<td>2.2-6.7</td>
</tr>
</tbody>
</table>

Data Projections

<table>
<thead>
<tr>
<th>Technology Variant</th>
<th>Typical projected international values and ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency (2020/2030/2050)(18), %</td>
<td>Direct</td>
</tr>
<tr>
<td>Depends on introduction fluidised beds</td>
<td>35/38/na</td>
</tr>
<tr>
<td>Lifetime, yrs</td>
<td>30+</td>
</tr>
<tr>
<td>Emissions/pollutants (emitted/avoided)</td>
<td>Depending on logistics and biomass feedstock</td>
</tr>
<tr>
<td>Investment cost (2020/2030/2050), USD/kW</td>
<td>n/a</td>
</tr>
<tr>
<td>Production cost (2020/2030/2050), USD/MWh</td>
<td>n/a</td>
</tr>
<tr>
<td>Global/regional potential</td>
<td>High (na)</td>
</tr>
<tr>
<td>Market share, %</td>
<td>Depends on competition for biomass feedstock</td>
</tr>
</tbody>
</table>

\(16\) Based on data from DENA (2011)
\(17\) Based on cost for separate boiler (IPCC 2011)
\(18\) Based on ETSAP technology brief on Biomass for heat and power, May 2010