Analysis of GHG Reduction Tool in Domestic Power Sector by Using TIMES Model

 $2013.\ 11.\ 4$

TIMES Model MARKAL-TIMES Model characteristics > Based on the flow of energy and materials Name TIMES Analysis model for energy system(ETSAP) of IEA Bottom-up Cost-minimized energy system Optimization Char. dynamic Optimization though long period Partial Eq. approach Model establishment to meet final demand Target Fn. Cost Fn. Minimization of Cost Fn. Target Fn. Discounted total cost (about tech.) Supply-demand condition/ CO2 emission Constraints Components Deterministic Var. Energy supply, Activity of Tech.

2

Power Sector modeling

Year	Demand(GWh)					
	5 th National Plan	6 th National Plan	Demand Prospect(temp.)			
2013	482,400	485,428	485,154			
2015	520,842	526,356	526,966			
2020	598,221	630,964	627,475			
2025	-	733,060	708,765			
2027	-	771,007	738,573			

Bas	sic Pr	emi	se						
€ I	Tuel price	and Er	nission	сс	efficie	ents	5		
	2010) Reference	e price (M	\$/PJ)		Emi	ission coef	f.(1,000CO2t/PJ)
	Anthracite Coal	5.23	Nuclear		0.304	An	ithracite Coal	108.9	_
	Bituminous Coal	4.18	By-gas		13.69	Bitu	uminous Coal	95.0	_
	B-C oil	15.71	Waste		1.06	E	3-C oil	76.3	
	LNG	13.69					LNG	56.5	_
	Demand P	rospec	t						
			2010		2020		2030	2040	2050
_	Demand(GWh)	434,16	0	627,47	5	779,061	889,779	973,360
	I경제연구(RGY ECONOMICS INSTITU	원 ITE							11

e	Technologie	on Tech.
	Category	Technologies
	New &	Hydro, Solar PV,, Wind, Waste, By-gas, Biomass,
	Renewables	Ocean, Fuel-cell, IGCC
	Coal	Bituminous Coal
	Petroleum	B-C oil
	Gas	LNG(including complex)
	Pump	Pump
	Nuclear	Nuclear
	Internal cTransmis	onsumption rate : 4.2%(2010) sion & Distribution loss: 3.99%(2010)

12

GHG Reduction Tool

13

GHG Reduction Tool

◎ GHG reduction tool in power sector

Result of Analysis

0	Dem	and reduction sc	enario			
					GHG	
	Scenario	Composition	MCO2t		Reduction rate	\$/CO2t
		ano composition	emission	reduction	(excluding indirect emission)	Reduction Cost (excluding demand re. cost)
	Baseline		307.0	-	-	-
		Demand reduction 6.4%	280.0	26.9	8.8% (2.4%)	-17.0
	Demand	Demand reduction 20%	211.1	95.9	31.2% (11.2%)	-8.0
	reduction	Demand reduction 20% + Improve mix	194.6	112.4	36.6% (16.6%)	7.6 (98.2)

Pas	sive demand redu	ction so	cenario			
		GHG				
		MCO2t			\$/CO2t	
Scenario	Composition	emission	reduction	Reduction rate (excluding indirect emission)	Reduction Cost (excluding demand re. cost)	
	Baseline		-	-	-	
	Demand reduction 6.4% + New tech.(Conservative)	272.7	34.3	11.2% (4.8%)	-12.3 (4.6)	
	Demand reduction 6.4% + New tech.(Middle)	272.1	34.9	11.4% (5.0%)	-11.9 (14.9)	
Passive	Demand reduction 6.4% + New tech.(Progressive)	257.0	50.0	16.3% (9.9%)	6.1 (47.3)	
	Demand reduction 6.4% + New tech.(Progressive) + Improve mix (to Target)	205.4	101.6	33.1% (26.7%)	70.2 (132.3)	

⊜ Ac	tive demand reduc	tion sc	enario			
		GHG				
	Composition	MCO2t			\$/CO2t	
Scenario		emission	reduction	Reduction rate (excluding indirect emission)	Reduction Cost (excluding demand re. cost)	
Baseline		307.0	-	-	-	
	Demand reduction 20% + New tech.(Conservative)	207.6	99.4	32.4% (12.4%)	-5.3 (6.6)	
	Demand reduction 20% + New tech.(Middle)	207.1	99.9	32.5% (12.5%)	-4.6 (14.9)	
Active	Demand reduction 20% + New tech.(Progressive)	195.3	111.7	36.4% (16.4%)	1.7 (55.3)	
	Demand reduction 20% + New tech (Progressive) + Improve mix (to Target)	163.6	143.3	46.7% (26.7%)	27.6 (118.9)	

