National Energy System Modelling with TIMES – an MSc. Course at DTU

Olexandr Balyk Energy Systems Analysis Group 70th Semi-Annual ETSAP Meeting 17-18 November 2016, CIEMAT, Madrid

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)_{f^{(i)}(x)}^{i}}{a!} a^{i} = \sum_{i=0}^{\infty} \frac{(\Delta x)_{f^{(i)}(x)}^$

DTU Management Engineering Department of Management Engineering

Overview

- General info
- Course design
 - Learning objectives
 - Teaching methods and activities
 - Assessment
 - Core elements
 - Course timetable
- Anticipated challenges
- Questions & Comments

DTU

General Info

Tittle: National energy system modelling with TIMES Duration: 3 weeks Students: 12 – 100? Crew: 2 Senior Researches, 2 Postdocs, 4 PhD Students Workload: 5 ECTS Launch: January, 2017

General Info: Students

Study programme: Master in Sustainable Energy Year: 2nd

Course prerequisites (previous DTU courses):

- Modelling and Analysis of Sustainable Energy Systems using Operations Research
- Energy Economics, Markets and Policies
- Feasibility studies of energy projects

Course Design: Learning Objectives

- **Collect** and **evaluate** data critically e.g., by comparing production costs of technologies
- **Develop** and **analyse** internally consistent future energy scenarios
- **Critically reflect** on a tool functionalities as well as main assumptions and limitations of that type of tool in general and specifically for the applied tool
- Validate and explain results
- Use TIMES model generator for creating a national energy system model and **describe** its structure
- Analyse national energy system scenarios applying a TIMES model
- **Apply** constraints in TIMES to represent e.g., limited renewable resource potentials
- **Represent** energy demand, transmission, conversion and resource potentials for different sectors of an existing energy system in TIMES
- Explain the modelling of specific technologies in a TIMES energy system model and compare the system consequences of implementing them
- **Clarify** sensitivities of main assumptions through sensitivity analysis
- **Synthesise** the main conclusions and **discuss** results in relation to results of other energy system analyses and current debate in society
- Coordinate model development

Course Design: Teaching Methods

- Project-based learning
 - Develop a national TIMES model
 - Use it for an analysis
- Spiral learning
 - Gradual exposure to TIMES and VEDA
 - Increasing sophistication of model sectors

Course Design: Teaching Activities

- Lectures
- e-Learning
 - Mostly tutorials
- Group work (matrix structure)
 - Every "work group" develops a country model and uses it for an analysis
 - Every "study group" contains students responsible for a single sector (e.g. transport)

Course Design: Assessment

- Summative
 - Group posters
 - Written exam (e.g. multiple choice)
- Formative
 - Pre-test
 - ...

Course Design: Core Elements

Course Design: Course Plan

- Week 1: lectures, exercises, data
- Week 2: model structure and data
- Week 3: validation and analysis

	Day 1	Day 2	Day 3	Day 4	Day 5
Week 1	ESA & tools, Scenario analysis	Supply, EX	Power & Heat, EX	RES & IND & COM, EX	Transport, EX
	Intro TIMES, group forming	Data Quality, CG	CG	CG	CG
X	P1 – country overview and agenda	Model structure, EX	Time, EX	Geography, EX	Validation& calibration, EX
Wee	Intro, SG	SG/CG	SG/CG	SG/CG	SG/CG
6	P2 – model structure and analysis	CG	CG	CG	CG
Wee	SG	SG	SG	SG (P3 - Analysis

Course Design: Other Practicalities

- Modelling sophistication and heterogeneity
 - We provide example structure for sectors (developed in exercises)
- Data availability
 - We point out data sources (e.g. make sure some data is available for students)

DTU

Anticipated Challenges

- Recommended (not mandatory) prerequisites
- Flexible class size
- X-mas holidays

Thoughts, comments, questions...?

Thank you for attention!