

GHG emission reduction due to energy efficiency measures under climate policy

Tom Kober (ECN)

ETSAP semi-annual workshop

Copenhagen, 19 Nov 2014

www.ecn.nl www.camecon.com

Outline

- 1. Background
- 2. TIAM-ECN model description
- 3. Results
- 4. Conclusion

Background of this study

- Initiated and funded by UNEP Risø Centre
- Support to UN GAP report 2014
- Involved partners:
 - Energy modelling: ECN (TIAM-ECN model) and Enerdata (POLES model)
 - Macro-economic modelling: Cambridge Econometrics (E3ME model)
- Focus: G20 member countries, time horizon 2030

• This presentation highlights the findings derived from TIAM-ECN.

TIAM-ECN model characterisation

- Economic optimisation: determination of cost optimal configuration of the energy system
- 20 world regions with trade of energy, emission certificates and captured CO₂

ECN

- All energy supply and demand sectors (from resource extraction to the final end use of energy)
- Comprehensive energy technology portfolio, e.g. hydrogen and synfuel production, CCS in power, industry and upstream sector, renewables for heat and power
- Emissions: CO₂, CH₄, N₂O

Energy efficiency measures in TIAM-ECN

- Different power plant technologies
- Energy technology for industrial applications
- Energy conversion technology in residential and commercial sectors
- Energy savings in the demand sectors
- Transport technologies

Example Gasoline cars

Technology	Reduction of fuel consumption compared to standard technology	Additional invest costs compared to standard technology
Gasoline cars		
Advanced car with improvements up to 25 US\$ per %- point of fuel reduction, including low rolling resistance tyres, low friction design and material, improvement of aerodynamics	8 %	168 US\$
Advanced car with improvements up to 35 US\$ per %-point of fuel reduction, including additionally lightweight components and variable valve actuation and lift	20 %	619 US\$
Advanced car with improvements up to 50 US\$ per %-point of fuel reduction, including additionally start and stop technology and direct injection	33 %	1350 US\$
Advanced car with improvements up to 100 US\$ per %- point of fuel reduction, including additionally starter- alternator, lightweight steel components, auxiliary systems improvements and dual clutch transmission	44 %	2765 US\$
Advanced car with improvements up to 170 US\$ per %-point of fuel reduction, including additionally lightweight aluminium	46 %	3344 US\$

Scenario definition & assumptions

• BAU plus 3 carbon tax scenarios:

scenario	2010	2020	2030	2040	2050
carbon tax 40 US\$ (ct40)	0	13	40	40	40
carbon tax 70 US\$ (ct70)	0	23	70	70	70
carbon tax 100 US\$ (ct100)	0	33	100	100	100

- Model input data harmonization with POLES & model linkage with E3ME
- Population growth according to UN projection (medium fertility rate)
- GDP(PPP) growth by more than factor 4 (2010-2050)

billion US\$2005	2010	2020	2030	2040	2050
World	66755	102981	152792	215480	295082

Global GHG emissions

GHG emission in the BAU and reductions under carbon taxes

💓 ECN

GHG emission reduction due to energy efficiency measures

ECN

💓 ECN

Impact of energy efficiency measures on regional level

Share of energy efficiency of total GHG emission reduction

	Share of emission reductions due to energy efficiency measures of total cumulative GHG emission reductions between 2010 and 2050					
Scenario	0 - 9 %	10 - 14 %	15 - 19 %	20 - 24 %	25 - 29 %	
ct40	Ref. Econ.	Argentina Australia Brazil Canada Mexico South Korea USA	Japan Europe Rest of world		China India	
ct70		Japan South Korea	Argentina Brazil Canada China Mexico USA Ref. Econ. Rest of world	Australia India	Europe	
ct100		Brazil Canada South Korea Ref. Econ.	Argentina Japan Mexico Rest of world	Australia China India USA	Europe	

N. B.: Ref. Econ. refers to Reforming Economies

TIAM-ECN and POLES broadly agree on regional effects

Cumulative emission reductions (2015- 2030) due to energy efficiency	carbon tax 40 \$		carbon	carbon tax 70\$		carbon tax 100\$	
improvements (units in MtCO2e)	POLES	TIAM-ECN	POLES	TIAM-ECN	POLES	TIAM-ECN	
World	15252	16069	24067	21612	31071	26884	
Europe ¹	298	1763	740	2758	1136	4654	
China	6939	6715	10707	8435	13101	9499	
India	1466	2388	2214	2486	2720	2721	
USA	1294	1092	2159	1825	2932	2228	
Canada	191	53	310	249	418	280	
Brazil	128	59	213	264	294	296	
Australia/New Zealand	173	157	294	142	389	170	
Mexico	123	94	209	144	293	240	
Russia ²	1041	288	1602	1101	2050	1360	
Japan	249	215	404	271	551	328	
Middle East ³	404	716	666	1348	1035	1557	
South Korea	137	167	228	277	303	316	

¹ For POLES *Europe* refers to EU-28, for TIAM-ECN to the two native model regions Eastern and Western Europe.

² In TIAM-ECN this region represents the countries which belonged to the former Soviet Union.

³ Here included the Middle East indicative for Saudi Arabia as G20 member.

Conclusions on energy efficiency measures

- Partly cost-effective even under absence of carbon tax policy
- Responsible for 15-25 % of global GHG emission reductions until 2050
- Higher GHG mitigation contribution in the near and midterm (2020/2030) than in the long-run (2050)
- Offset by 2030 about 2 to 3 GtCO₂e for a price of carbon between 40 \$ and 100 \$ per ton of CO₂
- GHG reductions in the power sector & in industry and transport
- China, India and the USA offer prime opportunities

Acknowledgements

The analysis presented has been funded by the UNEP Risø Centre within the project *KEBMIN-EE_for_GAP2014*. The contents of this publication are the sole responsibility of the author and can in no way be taken to reflect the views of the UNEP Risø Centre.

Further results and documentation are provided in the ECN report ECN-E–14-038 which is soon available under www.ecn.nl/publications,

and in a synthesized publication comprising all participating models of this project, which will be published by the UNEP Risø Centre early 2015.

Thank you!

Tom Kober Policy Studies | Global Sustainability T: +31 88 515 4105 | F: +31 224 56 83 38 Radarweg 60, 1043 NT Amsterdam, The Netherlands kober@ecn.nl