Social, economic and environmental impacts of the promotion of renewable energies in Spain

Ex Post and Prospective Analysis

H.Cabal, Y.Lechón, N.Caldés, C.de la Rúa, D.García-Gusano, E.López-Bernabé, I.López-Dóriga and M.Santamaría

67th SEMI-ANNUAL ETSAP MEETING

Abu Dhabi, 1st-2nd June 2015

Background

- INER project, Spanish R+D Plan
- PER 2005-2010. Objectives: 12.1% Gross energy consumption 30.3% electricity production; and 5.83% biofuels of the consumption in transport Instruments: fiscal support, tax exemptions and FIT

Evolution of the Spanish electricity system from 2005 to 2013

40% in 2013

1. Ex Post analysis

Cost assessment of the most recent energy policies in Spain not only considering the private costs of electricity production but also the environmental and socioeconomic costs

2. Prospective analysis

Optimal electricity system in the medium and long term under different scenarios

Steps

- 1. Levelised Electricity Costs (LEC)
- 2. Environmental externalities (LCA and ExternE)
- 3. Socioeconomic externalities (I-O, WIOD)

Ex Post analysis- Methodological approach

Partial Cost Benefit Analysis

Relevant factor	Cost or benefit for society	Measurement indicators	Monetized (method)
Electricity generation costs	Private cost	LEC	Yes
Economic activity	Socio-econ externality	Value Added	Yes
Local environ effects	Environ externality	Various environ impact indicators/Kwh	Yes (Extern-E & Cases)
Global environ effects	Environ externality	CO2 equivalent emiss/khwh	Yes (Extern-E & Cases)
RES Support expenditures	Public cost	Feed in Tariff expenses	Yes

Not considered: employment, tax revenues, fossil fuel imports, other renewable support policies, transaction costs, merit order effects, increase in RES exports, rural development

SCENARIOS considered (2005-2010)

Scenarios	Description
ACTUAL	The RES deployment throughout 2005-2010
PER	Spanish energy mix matches the PER objectives
NO RES	No additional RES plants are installed since 2004 and electricity is now produced with natural gas combined cycle (NGCC) plants

Ex Post analysis- Results

Total costs (private + social)

The costs of FIT exceeded the net environmental and socioeconomic externalities

installation of solar Huge PV technologies from 2007 led to higher cost in ACTUAL scenario **RES support expenditures vs** avoided external costs 6000 5000 4000 3000 MEuro Externalities FIT 2000 1000 0 2010 2005 2006 2007 2008 2009 -1000 MINISTERIO OBIERNO DE ECONOMÍA COMPETITIVIDAD Medioamb

8

Tecnológica

TIMES- Spain

National energy model built in the framework of the NEEDS project and improved in RES2020, COMET and INER projects. Part of the PET model

One region

Time horizon 2050. In this study, 2035

Twelve time slices: four seasons and day/night/peak

Five demand and two supply sectors

Demand scenarios: energy demand driver projections from the GEM-E3 updated with national data

Trade: electricity exchange with France, Portugal and Morocco

Recently recalibrated to 2005 and updated

SCENARIOS considered

Scenarios considered	Description
BASE	National and international energy and environmental policies and commitments
ZERO	No restrictions or targets to emissions and renewable technologies penetration
INTER	Internalization of the environmental and socioeconomic external costs for all the technologies

PER 2011-2020 objectives

GWh	2015	2020
Hydro	31,371	32,814
Solar PV	9,060	12,356
CSP	8,287	14,379
Wind onshore	55,538	70,734
Wind offshore	66	1,822
Biomass	7,142	12,200

Prospective analysis- Results

Fossil and renewable technologies production

Prospective analysis- Results

BASE scenario vs PER 2011-2020 objectives

Ex Post analysis

RES support policies in Spain have been indeed effective but not cost-efficient. Public support expenditures largely surpassed the avoided external costs considered in the analysis.

FIT should be reestablished and better defined according to the external benefits of the technology or/and setting a cap for the installed capacity

Prospective analysis

It is possible to meet the objectives of renewable technologies penetration and emission reductions set by the European Directives.

The internalization of the external costs would anticipate meeting those targets

This study is being continuously updated introducing new factors in the partial CBA, doing sensitivity analysis for instance in the origin of the goods and services in renewable technology development and other

Social, economic and environmental impacts of the promotion of renewable energies in Spain

Ex Post and Prospective Analysis

H.Cabal, Y.Lechón, N.Caldés, C.de la Rúa, D.García-Gusano, E.López-Bernabé, I.López-Dóriga and M.Santamaría

Thank you

helena.cabal@ciemat.es

67th SEMI-ANNUAL ETSAP MEETING

Abu Dhabi, 1st-2nd June 2015

Anexes

CBA data sources and working assumptions

Costs and benefits	What?	Methodology	Data
Private costs	Electricity generation costs (c €/Kwh)	LEC	Spanish data International data (OECD, others)
Socio-economic externalities	Value added	I-O	Spanish I-O (WIOD) Investment and O&M cost vectors (final demand)
Environmental externalities	CO2 and other local pollutants	LCA & Extern-E	CASES Intern. literature review
Res Support expend	FIT expenditures		Official figures APPA (autoproducers)

PRIVATE COSTS: Levelized Electricity Cost

 $LEC = \frac{\sum_{t=1}^{n} \frac{I_t + M_t + F_t}{(1+r)^t}}{\sum_{t=1}^{n} \frac{E_t}{(1+r)^t}}$

Where:

- LEC= Average lifetime levelized electricity generation cost
- $I_{t=\text{Investment expenditures in the year t}}$
- $M_{t=}$ Operations and maintenance expenditures in the year t
- $F_{t=}$ Fuel expenditures in the year t
- $E_{t=\text{ Electricity generation in the year t}}$
- T = Discount rate

 $oldsymbol{n}=$ Life of the system

SOCIO-ECONOMIC BENEFITS: Input-Output (W. Leontief, 1939)

-Accounts for the direct and indirect effects -Captures impacts on economic activity, V.A., employment, etc -Investment and O&M cost vectors for all technologies & input-output table -Important advantages & limitations

$$X = (I - A)^{-1}Y$$
$$L_i = R(I - A)^{-1}Y$$

	Consumo de los sectores			Demanda	Producción		
					final Y	total X	
Producción de los sectores	1	2	3	n			
1	X ₁₁	X ₁₂	X ₁₃	X _{1n}	Y_1	X_1	
2	X ₂₁	X ₂₂	X ₂₃	X_{2n}	<i>Y</i> ₂	X_2	
3	X ₃₁	X ₃₂	X ₃₃	X_{3n}	<i>Y</i> ₃	<i>X</i> ₃	
n	X _{n1}	X _{n2}	X _{n3}	X_{nn}	Y _n	X _n	
Consumo intermedio I	I	I_2	I_3	I _n			
Valor añadido V	VI.	V_2	V_3	V _n	GDP)	
Producción total X	$\star \mathbf{I}_1$	X_2	OBJERNO E EBBANA	X MINIST		Centro de Investigo	ciones
	* *			YCOM	PETITIVIDAD	nergéticas, Medioan y Tecnológicas	nbiental

Life Cycle Assessment. LCA.

ExternE. Impact pathway approach

Starting from the emission of a pollutant, the ExternE methodology simulate the transport and transformation in the atmosphere using atmospheric dispersion models

Impacts in physical terms are then calculated using dose response functions

Monetary valuation of different impacts is used to estimate externalities in monetary units

LEC projection

Total socio-economic impacts for different electricity technologies (2010)

Environmental impacts for different electricity technologies (2010)

