Modelling Behaviour in Integrated Energy and Transport Models - A review 68th ETSAP Meeting Sophia Antipolis, 23rd October 2015 #### Giada Venturini PhD Student System Analysis DTU Management Engineering give@dtu.dk ### DTU Management Engineering Department of Management Engineering ## **Outline** - Motivation of the review - Classification of Integrated Energy and Transport Systems - Analysed models - Transport-related behaviour - Modelling features and methodologies - Conclusions of the analysis ## **Motivation** - Integrated Energy and Transport system models: - Analyse the **interactions** between the two systems to evaluate potentially unexplored climate mitigation options - Study of the effects that a sector-specific policy may have on the rest of the system - Behaviour in transport systems: - There is proven evidence that people's decisions in matter of technology choice, mode choice or route choice are driven by multiple factors (not only monetary parameters) - There is increasing interest in this topic (researchers are challenged by the task of **quantifying soft aspects** of society) - Modelling behaviour may enable a more realistic representation of the system # Integrated energy and transport systems # Level of integration of the transport system | Definition | Energy system with no or poor representation of transport sector | Energy system model where transport is a sector represented at a aggregated level | Energy system model where transport is a sector represented at a disaggregated level | Transport system model for which a link to a energy module is created to study the interaction between the two systems | Stand-alone
transport
model | |------------|--|---|--|---|--| |------------|--|---|--|---|--| # **Transport system** In terms of climate mitigation options greater efforts are focused on specifying fuel and vehicle technologies. Other mitigations options are available with a wiser redistribution of transport services across modes, both for passenger and freight. ### Literature review - **COCHIN TIMES:** consumer heterogeneity, technology choice (Bunch et al., 2015) - Irish TIMES: value of travel time (Daly et al., 2014) - IMACLIM-R: rebound effects, location decisions (Waisman et al., 2013) - SocioMARKAL: technology choice, sociological surveys (Kanala et al., 2013) - TRAVEL: value of travel time, soft-linking (Girod et al., 2012) - **UKTCM:** high dissaggregation, soft-linking, transport policies (Brand et al., 2012, Anable et al., 2012) - GCAM: integrated assessment tool (Kyle and Kim, 2011) - **ReMIND-G:** integrated model, constant elasticities of substitution (Pietzcker et al., 2010) - **ECLIPSE:** disaggregated transport submodule (Turton, 2008) - CIMS: simulation, vehicle and modal choice (Horne et al., 2005) - MIT-EPPA: cross elasticities (Paltsev et al., 2004) | Model | Model type | Transport | Time and space outlook | Focus | Reference | |--------------|---|-----------|------------------------|--|---| | COCHIN-TIMES | Bottom-up
Optimization
Partial equilibrium | E+T | California | Modelling of consumer
choices related to
transportation
decisions through
discrete choice models | Bunch et al., 2015 | | Irish TIMES | Bottom-up
Optimization
Partial equilibrium | E+T | Ireland
2008-2030 | Modelling modal choice
by introducing
competition between
modes | Daly et al., 2014 | | IMACLIM-R | Hybrid
Dynamic recursive
General
equilibrium | E+T | Global
2001-2100 | Explicit representation of non-price determinants of mobility and interaction with the rest of the system | Waisman et al.,
2013 | | SOMARKAL | Bottom-up
Optimization
Partial equilibrium | E | Geneva
2005-2025 | Inclusion of behavioural parameters captured through sociological surveys | Kanala et al., 2013 | | TRAVEL | Optimization
Nested MNL
Partial equilibrium | T+ | Global
2010-2100 | Analysis of travel demand, modal shifts and changes in technology and fuel choice under climate policy | Girod et al., 2012 | | UKTCM | Bottom-up
Simulation | T+ | United Kingdom | Simulation of
transport-related
policies | Brand et al., 2012
Anable et al., 2012 | | Model | Model type | Transport | Time and space outlook | Focus | Reference | |----------|---|-----------|------------------------|--|---------------------------| | GCAM | Integrated assessment model Dynamic recursive General equilibrium | E+T | Global
2005-2095 | Implications of global deployment of LDV | Kyle and Kim,
2011 | | ReMIND-G | Hybrid model
Optimization | E+T | Global
2005-2100 | Analysis of mitigation options for the transport sector, including vehicle technologies and modal shift | Pietzcker et al.,
2010 | | ECLIPSE | Hybrid
General
equilibrium | E+T | Global
2000-2100 | Detailed modeling of transportation system in order to analyze interactions between transport and the broader energy market and economy | Turton, 2008 | | CIMS | Hybrid
Simulation
General
equilibrium | E+T | Canada
2005-2035 | Use of empirically derived discrete choice models estimated for vehicle and commuting decisions | Horne et al., 2005 | | MIT-EPPA | Recursive dynamic
General
equilibrium | E+T | Global
1997-2010 | Introduction of a household transport module to explicitly represent substitution possibilities between own-supplied and purchased transport services. | Paltsev et al., 2004 | # **Transport-related behaviour** - Modal choice - Technology and vehicle choice - Driving patterns: *how* the vehicle is driven (eco-driving, route choice) - Mobility management services: car sharing, trip chaining, intermodality - Investments in transport infrastructure: refuelling network availability, express bus lanes, preference lanes for non-motorized modes - Work in transit and virtual mobility # **Desired mitigation effects** **Avoid** Reduce the total transport service demand Improve Higher energy efficiency of vehicles and fuel production technologies + increase in the capacity factor for vehicles **Switch** To renewable fuels and vehicle technologies **Shift** To more efficient modes for passenger and freight transport (from Nordic Energy Technology Perspectives, 2013) # **Transport-related behaviour** # **Behaviours in E+T models** | Behavioural feature | Modelling methodology | Reference | |---------------------|---------------------------------------|--| | Modal choice | Discrete choice models | Girod et al., 2012
Kyle and Kim, 2011
Horne et al., 2005 | | | Linear time-budget constraints | Daly et al., 2014
Waisman et al., 2013
Turton, 2008 | | | Constant elasticities of substitution | Pietzcker et al., 2010
Paltsev et al., 2004 | ## **Mode choice - Discrete choice models** TRAVEL - Girod et al. (2012) # Mode choice - Time travel and time investment budget Irish TIMES - Daly et al. (2014) # **Behaviour in E+T models** | Behavioural feature | Modelling methodology | Reference | |---------------------|------------------------|---| | Technology choice | Discrete choice models | Bunch et al., 2015
Girod et al., 2012
Anable et al., 2012
Kyle and Kim, 2011
Horne et al., 2005 | | | Virtual technologies | Kanala et al., 2013 | | | Discount rates | Murphy et al., 2007 | ## **Vehicle choice - Discrete choice models** COCHIN TIMES - Ramea et al. (2015) # **Technology choice - Virtual technologies** SocioMARKAL - Kanala et al. (2013) # **Behaviour in E+T models** | Behavioural feature | Modelling methodology | Reference | |--|----------------------------------|----------------------| | Route choice and driving | Cross elasticities | Paltsev et al., 2004 | | patterns | Time and cost budget constraints | Waisman et al., 2013 | | Mobility management services (car pooling) | Discrete choice models | Horne et al., 2005 | # **Car pooling - Discrete choice models** CIMS - Horne et al. (2005) # Modelling behaviour in E+T models ### **Analyzed features** - Mode and technology choice: effort is already in place, yet less in the freight sector - **Driving patterns**: endogenize the speed or include a more detailed spatial representation is it achievable in an integrated energy and transport model? - **Mobility management services**: endogenize the load factor through cross-elasticities what does it depend from? # Modelling behaviour in E+T models ### Pros and cons of the methodologies - Reliability of the modelling assumptions - Time and cost of the data collection - Compatibility and integration with the rest of the model - Resulting computational time # Thank you for your attention! ### **Giada Venturini** PhD Student System Analysis DTU Management Engineering give@dtu.dk