Energy Technology Systems Analysis Programme

http://www.ieaetsap.org/web/Documentation.asp

Documentation for the TIMES Model

PART |

July 2016

Author: Richard Loulou

Co-authors:  Gary Goldstein
Amit Kanudia
Antti Lettila
Uwe Remme

Reviewers Evelyn Wright
George Giannakidis
Ken Noble



General Introduction to the TIMES Documentation

This documentation is composed of five Parts.

Part | providesa general description of the TIMES paradigm, with emphasis on the
modelOs general structure and its economic significance. Part | also includes a simplified
mathematical formulation of TIMES, a chapter comparing it to the MARKAL model,
pointing tosimilarities and differences, and chapters describing new model options.

Part Il constitutes a comprehensive reference manual intended for the technically

minded modeler or programmer looking for ardepth understanding of the complete

model details,n particular the relationship between the input data and the model
mathematics, or contemplating making changes to the modelOs equations. Part Il includes
a full description of the sets, attributes, variables, and equations of the TIMES model.

Part Il describes therganization of the TIMES modeling environment and@#evS

control statements required to run the TIMES model. GAMS is a modeling language that
translates a TIMES database into the Linear Programming matrix, and then submits this
LP to an ptimizer and generates the result fileart 11l describes howhe routines
comprising the TIMES source codaide the model through compilation, execution,

solve, and reporting; the files produced by the run process and their utige adous
switches that control the execution of the TIMES caaeording to the model instance,
formulation options, and run options selected by the its&lso includes a section on
identifying and resolving errors that may occur during the run process.

Part IV provides a stepy-step introduction to building a TIMES model in the VEDA
Front End (VEDAFE) model management software. It first offers aargation to the
basic features of VEDAE, including software layout, data files and tables, and model
management features. It then describes in detail twelve Demo models (available for
download from the ETSAP website) that progressively introduce VEDAES

principles and modeling techniques.

Part V describes the VEDA Baeknd (VEDA-BE) software, which is widely used for
analyzing results from TIMES models. It provides a complete guide to using \HEDA
including how to get started, import model results, create and view tables, create and
modify user sets, and step through results in the model Reference Energy System. It also
describes advanced features and provides suggestions for best practices.
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Organization of PART |

Part | comprisefive divisions, each containing a number of chapters:

¥

Chaptes 1 and provide a general overview of the representation in TIMES of
the Reference Energy System (RES) of a typical region or country, focusing on its
basic elements, namely technologies and codities.

Chapters 3 to 7 describe the core TIMES model generaothe dynamic partial
equilibrium version with perfect foresight: Chapter 3 discusses the economic
rationale of the model, and Chapter 4 describes in more detail than chapter 3 the
elastc demand feature and other economic and mathematical properties of the
TIMES equilibrium. Chapter 5 presents a streamlined representation of the
Linear Program used by TIMES to compute the equilibrium. Chapter 6 describes
a new TIMES feature for conductjrsystematic sensitivity analyses. Chapter 7
describes the Climate Module of TIMES.

Chapters 8 to 11 contain descriptions of 4 extensions or variants that, if used,
depart from the assumptions of the core model in a way that alters the nature of
the equibrium: Chapter 8 covers the stochastic programming variant, which no
longer assumes perfect foresight, but rather imperfect fore€igapgter 9

describes the myopic use of TIMES, which violates the perfect foresight property
and replaces it with limitetbresight;Chapterl0 describes the lumpy investment
variant where some decisions are discrete rather than continuous, and thus violate
the convexity propertyChapter 1 describes thendogenousechnology éarning
extension, alsevolving norrconvex eéments.

Chapter 13s devoted to two extensions that make TIMES into a General
Equilibrium model, namely EMACRO and TIMESMERGE-MACRO.

Chapters 13 and 14 constitute appendices that may be of interest to readers at any
point in their use of the rest tife text. Chapter 13 provides a brief history and
comparison of TIMES and MARKAL, the modeling framework that preceded
TIMES. Chapter 14 providesshortreview of the theoretical foundation of

Linear Programming and the interpretation of the dual solatfi@nlinear

program.



1 Introduction to the TIMES model

1.1 A brief summary

TIMES (an acronym for The Integrated MARKAEFOM' System) is an economic

model generator for local, nationalulti-regiona) or globalenergy systems, which
provides a technologsich basis forepresentingnergy dynamics over a mufieriod

time horizon. It is usually applied to the analysis of the entire energy sector, but may also
beapplied to study single sect@sch aghe electicity and district heat sector.

Estimates of endise energy service demands (e.g., car road travel; residential lighting;
steam heat requirements in the paper industry; etc.) are provided by the user for each
regionto drive the reference scenarin addtion, the user provides estimates of the
existing stock of energy related equipment in all sectors, and the characteristics of
available future technologies, as well as present and future sources of primary energy
supply and their potentials.

Using thes as inputs, the TIMES model aims to supply energy services at minimum
global cost (more accurately at minimum lossobél surplus) by simultaneously making
decisions orequipment investment and opeoatiprimary energy suppjyand energy
traddor eachregion. For example, if there is an increase in residential lighting energy
service relative to the reference scenario (perhaps due to a decline in the cost of
residential lighting, or due to a different assumption on GDP growth), either existing
generatio equipment must be used more intensively or Bgassibly more efficienb
equipment must be installed. The choice by the model of the generation equipment (type
and fuel) is based on the analysis of the characteristics of alternative generation
technol@ies, on the economics of the energy supply, and on environmental criteria.
TIMES is thus a vertically integrated model of the entire extended energy system.

The scope of the model extends beyond purely eranignted issues, to the

representation of eironmental emissions, and perhaps materials, related to the energy
system. In addition, the model is suited to the analysis of emgngyonmental policies,
which may be represented with accuracy thanks to the explicitness of the representation
of techndogies and fuels in all sectors.

In TIMES Plike in its MARKAL forebearbthe quantities and prices of the various
commodities are in equilibrium, i.e. their prices and quantities in each time period are

'MARKAL (MARket ALlocation model, Fishbone et al, 1981983, Berger et al. 1992) and EFOM (Van
Voort et al, 1984) are two botteop energy models that inspired the structure of TIMES.
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such that the suppliers produce exactly the questitemanded by the consumers. This
equilibrium has the property that the ta@abnomicsurplus is maximized.

1.2 Driving a TIMES model via scenarios

The TIMES model is particularly suited to teeplorationof possible energy futures

based on contrastedenarios Given the long horizorthat are usuallgimulated with

TIMES, the scenario approach is really the only choice (whereas for the shorter term,
econometric methods may provide useful projections). Scenarios, unlike forecasts, do not
pre-suppose kowledge of the main drivers of the energy system. Instead, a scenario
consists of a set @oherent assumptiorabout the future trajectories of these drivers,
leading to a coherent organization of the system under study. A scenario builder must
thereforecarefully test thescenaricassumptions for internal coherence, via a credible
storyline

In TIMES, a complete scenario consists of four types of inputs: energy service demand
curves, primary resourcsupply curvesa policy setting, and the descriptiamfsa

completeset of technologies. We now present a few comments on each of these four
components.

1.2.1 The Demanda@mponent of a TIMES scenario

In the case of the TIMES modelemand drivers (population, GDiRyuseholdsetc.) are
obtained externally, via other models or from accepted other soAcese example
several global instances BfMES (e.g.Loulou, 2007 use the GEMEZ to generate a set
of coherent(nationaland sectoralputputgrowth rates in the variousgions. Note that
GEM-E3 or GEMINI-E3 themselvesse other drivers as inpuis order to derive GDP
trajectories. These drivers consist of measures of technological progress, population,
degree of market competitiveness, and a few dtfeghaps qualitave) assumptions. For
population and household projections, TIMEStancesise the same exogenous sources
(IPCC, Nakicenovic 2000, Moomaw and Moreira, 200Qther approaches may be used
to derive TIMES drivers, whether via models or other means.

*European Commissioihe GEME3 Mode) General Equilibrium Model for Economy, Energy and
Environmenthttps://ec.europa.eu/jrc/en/gez/model
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For the global versions of TIMESthe main driversre: Population, GDP, GDP per
capita, number of households, and sedtoutputs For sectoralIMES models the
demand drivers may be different depending on the system boundaries.

Once the drivers for a TIME®odel are determined and quantified the construction of

the reference demand scenario requires computing a set of energy service demands over
the horizon. This is done by choosigeligsticities of demands their respective drivers,

in each region, usindné following general formula:

Demand= Driver E'®i

As mentioned above, the demandswserprovided for the reference scenaoialy.

When the model is run for alternate scenarios (for instance for an emission constrained
case, or for a set of alternate technological assumptions), it is likely that the demands will
be affected. TIMES has the capability of estimating the response ofrttamds to the
changing conditions of an alternate scenario. To do this, the model requires still another
set of inputs, namely the assumed elasticities of the demands to their own prices. TIMES
is then able to endogenously adjust the demands to the ateasats without exogenous
intervention. In fact, the TIMES model is driven not by demands bdebyand curves

To summarize: the TIMES demand scenario components cohaiset of assumptions
on the drivers (GDP, population, householugtput$ and o the elasticities of the
demands to the drivers and to their own prices.

1.2.2 The Supply component of HIMES scenario

The second constituent of a scenario is a setply curvesor primary energy and
material resources. Mulitepped supply curveseeasily modeled in TIMES, each step
representing a certain potential of the resource available at a particular cost. In some
cases, the potential may be expressed as a cumulative potential over the model horizon
(e.g. reserves of gas, crude oil,.ptas acumulative potential over the resource base (e.g.
available areas for wind converters differentiated by velocities, available farmland for
biocrops, roof areas for PV installations) and in others as an annual potential (e.g.
maximum extraction rates, orrfrenewable resources the available wind, biomass, or
hydro potentials). Note that the supply component also includes the identification of
trading possibilities, where the amounts and prices of the traded commodities are
determined endogenouslyptionally within userimposed limits).

11



1.2.3 The Policy component of a TIMESenario

Insofar as some policies impact on the energy system, they become an integral part of the
scenario definition. For instancereferencescenario may perfectly ignore emissions of
various pollutants, while alternate policy scenarios may enforce emission restrictions, or
emission taxes, etc. The detailed technological nature of TIMES allows the simulation of
a wide variety of both micro measures (e.g. technology portfolios, or tagdisilies to
groups of technologies), and broader potargetysuch as general carbon tax, or permit
trading system on air contaminant& simpler example might be a nuclear policy that

limits the future capacitgf nuclear plants. Another example midge the imposition of

fuel taxes, or ofargeted capitadubsidies, etc.

1.2.4 The Techneeconomiccomponent of a TIMEScenario

The fourth and last constituent of a scenario is the set of technical and economic
parameters assumed for the transformationiofgy resources into energy services. In
TIMES, these techreconomic parameters are described in the fortaabnologiegor
processes) that transform some commodities into others (fuels, materials, energy services,
emissions). In TIMES, some technologimay beuserimposed and others may simply

be available for the model to chodsem. The quality of a TIMES model rests on a rich,

well developed set of technologies, both current and future, for the model to choose from.
The emphasis put on the techrgtml database is one of the main distinguishing factors

of the class of Bottorap models, to which TIMES belongs. Other classes of models will
tend to emphasize other aspects of the system (e.g. interactions with the rest of the
economy) and treat the tedcal system in a more succinct manner via aggregate
production functions.

Remark:Two scenarios may differ isome orall of their components. For instance, the

same demand scenario may very well lead to multiple scenarios by varying the primary
resource potentials and/or technologies and/or policies, insofar as the alternative scenario
assumptions do not alter the basic demand inputgefs andelasticities). The scenario

builder must always be careful about the overall coherence of the vassuwrsptions

made on the four components of a scenario.
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1.3 Selected senario types

The purpose of this section is to show how certain policies may be simuladd\VES
model The enormous flexibility of TIMES, especially at the technology level, alline
representation of almost any policy, be it at the natjaealtor, or subsector level.

Policy 1: Carbon tax
A tax is levied on emissions of CO2 at point of source.

This policy is easily represented in TIMES a) making sure that all technotbgte=mit
CO2 hae an emission coefficient, and then defining a tax on these emissems (
2.6.1.2). The policy may indicate that the tax be levied upstream for soresensectors
(e.g. automobiles), in which case the emission coefficient is defiribd ail refinery
level rather than at the level of individual car types.

Policy 2: Cap-and-trade on CO2

An upper limit on CO2 emissions is imposed at the national level (alternatively, separate
upper limits are imposed at the sector level). If the misdalulti-country, trade of

emission permits is allowed between countries (and/or between sectors). The trade may
also be upper bounded by a maximum percentage of the actual emissions, thus
representing a form of the subsidiarity principle.

This type of plicy is simulated by defining upper bounds on emissions, a straightforward
feature in TIMES (secti@2.6.13 and 2.6.2.8 By defining total sector emissions as a

new commodity, the sectoestricted cap is just as easily implemented. The trade of
national emissions makes use of the standard trade variables of TIMES (Se8tion

Policy 3: Portfolio standard
A sector issubmitted to a lower limit on its efficiency. For instance, the electricity

subsector using fossil fuels must have an overall efficiency of 5@%imilar example is
an overall lower limit on the efficiency of light road vehicles.

*This standard may also be imposed on the entire electricity generation sector, in which case renewable
electricity plants are assumed to have zero energy input.
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This type of policy regires the definition of a new constraint that expresses that the ratio
of electricity produced (via fossil fueled plants) over the amount of fuel used be more
than 0.5. TIMES allows the modeller to define such new constraints via the user
constraints (sewn 5.4.9.

Policy 4: Subsidies for some classes of technologies

The representation of this policy requires defining a capital subsidy for every new
capacity of a class of technologies. This is quite straightforward in TIMES using the
subsdy parameterésection 2.6.1.2

A more elaborate form of the subsidy might be to first levy an emission tax, and then use
the proceeds of the tax to subsidizeHemitting and noremitting technologies. Such a
compound policy requires several sequential runs of TIMEESirst run establishing the
proceeds of the carbon tax, followed by subsequent runs that distribute the proceeds
among the targeted technologies. Several passes of these two runs may well be required
in order to balance exactly the proceeds of thetakthe use of them as subsidies.

Assessing the robustness of policies

An important aspect of any policy is whether it will stay effective under various
conditions.Examples of such conditions are oil prices, climate parameters, availability of
certain esources, key technology costs or efficiency, &fgolicy thatremains effective
under a range of values for such conditiasssaid to beobust In TIMES, robustness

may be assessed using a variety of features, ranging from sensitivity arcigpisr (6)

to Stochastic Programming (chapter 8)
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2 The basic structure of thecore TIMES model

2.1 The TIMES economy

The TIMES energy economy is made up of producers and consunoersiofodities

such as energy carriers, materials, energy services, and emiBsialefault, TIMES

assumes competitive markets for all commoditiggess the modeler voluntarily imposes
regulatory or other constraints on some parts of the energy system, in whitthecase
equilibrium is (partially) regulated'he result is a suppigemand equilibrium that

maximizes thanet total surplugi.e. the sum of producersO and consumersO surpluses) as
fully discussed irchapters 3 and. TIMES may however depart from perfectly

competitive market assumptions by the introduction of-deéined explicit constraints,

such as limits to technological penetration, constraints on emissions, exogenous oil price,
etc. Market impdections can also be introduced in the form of taxessidigs and

hurdle rates.

While computing the equilibriupra TIMES run configures thenergy systerof aset of
regions over a certaiimehorizon in such a way as tminimize the net total coédr
equivalentlymaximize the net total surplusf the sygtem, while satisfying a number of
constraints TIMES is run in a dynamic manner, which is to say that all investment
decisions are made in each period with full knowledge of future evidresnodel is said
to haveperfect foresigHht(or to beclairvoyan). The next subsection describes in detail
the time dimension of the model.

2.2 Time horizon

Thetime horizonis divided into a usechosen number of tirperiods, each period

containing a (possibly different) number of years.

In the standard versiarsf TIMES each year in a given period is considered identical,

except for the cost objective function which differentiates between payments in each year
of a period For all other quantities (capacities, commodity flows, operating levels, etc

any model inpubr output related to periddapplies to each of the years in that period,

“ However, therer@ TIMES variant®discussed in chapters 8 to 12, that depart significantly from these
assumptions

15



with the exception of investment variables, which are usually made only once in a
period.

Another version of TIMES is available, in which the TIMES variabbapécities and
flows) are defined asome year in the maiof each period (called milestone year), and
areassumed to evolve linearly betweadbe successive milestone yearhis option
emulates that of the EFOM model and is discusseddtion 5.5

The initial period isusually considered a past period, over which the model has no
freedom, and for which the quantities of interest are all fixed by the user at their historical
values. It is often advableto choose an initial period consisting of a single year, in order
to facilitate calibration to standard energy statistics. Calibration to the initial period is one
of the more important tasks required when setting up a TIMES model. The main
variables to b calibrated are: the capacities and operating levels of all technologies, as
well as the extracted, exported, imported, produced, and consumed quantities for all
energy carriers, and the emissions if modeled.

In TIMES, years preceding the first period@play a role. Although no explicit variables
are defined for these years, data may be provided by the modeler on past investments.
Note carefully that the specification of past investments influences not only the initial
periodOs calibration, but afsartially determineshe modelOs behavior over several

future periods, since the past investments provide residual capacity in yeaesal

within the modeling horizon proper.

In addition to timeperiods (which may be of variable length), there are tiivisidns

within a year, also calletime-slices,which may be defined at will by the user (see Figure
2.1). For instance, the user may want to define seagsormns of theday/night, and/or
weekdays/weekends. Tinslices are especially important whenethee mode and cost of
production of an energy carrier at different times of the year are significantly different.
This is the case for instance when sloene energy commodity é&xpensiveo store so

that the matching of production and consumption of¢batmodity is itself an issue to

be resolved by the moddlhe production technologiésr the commoditynay

themselves have different characteristics depending on the time of year (e.g. wind
turbines or rurof-the-river hydro plants). In such cases, thatohing of supply and
demand requires that the activities of the technologies producing and consuming the

® There are exceptional cases when an investment must be repeated more than once in a period, namely
when the period is so long that it exceeds the techlifieaf the investment. These cases are described in
detail in section 6.2.8f PART II.
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commodity be tracked for each time slice. Examples of commodities requiring time
slicing may include electricity, district heat, natural gas, incalssteam, and hydrogen.

An additional reason for defining sub yearly time slices is the requirement of an
expensive infrastructure whose capacity should be sufficient to allow the peak demand
for the commodity to be satisfied. Technologies that storerenmality in one time slice,

at a cost, for discharge in another time slice, may also be defined and modeled.

The net result of these conditions is that the deployment in time of the various production
technologies may be very different in different timeesdi, and furthermore that specific
investment decisions will be taken to insure adequate reserve capacity at peak.

<— Model horizon —>

Period 1 Period 2 Period 3 Period 4

Annual

Seasons

|SP_VW|SP_VW |SU_V\WI|SU_VW |FA_VWHFA_\AW |WI_\I\H1%HI|WI_\AW Weekly

Daynite

Figure 2.1: Example of a tirglice tree

2.3 Decoupling of data and model horizon

In TIMES, special efforts have been made to decouple the specification of data from the
definition of the time periods for which a model is run. Two TIMES features facilitate
this decoupling.

First, the fact that investments made in past years are ieeddry TIMES makes it
much easier to modify the choice of the initial and subsequent periods without major
revisions of the database.

Second, the specification of process and demand input data in TIMES is made by
specifying thecalendaryearswhen the dea apply,irrespective of how the model time
17



periods have been defined. Tiedelthentakes care of interpolating and extrapolating

the datdor the periodschosen by the modeler for a particular model TUMES offers a
particularly rich range of interpolation/extrapolation modes adapted to each type of data
and freely overridden by the user. Sect8oh.1d Part Il discusses this feature.

These two features combine to make a change in the definitiomiodpeguite easy and
errorfree. For instance, if a modeler decides to change the initial yea2fib@io 2015,

and perhaps change the number and durations of all other periods as well, only one type
of data change is needed, namely to define the inesssnmade fror@011to 2015 as

past investments. All other data specifications need not be §lt&resl feature

represents a great simplification of the modelerOs work. In particular, it enables the user
to define time periods that have varying lengttighout changing the input data.

2.4 The components of &eference Energy Syste(RES): processes,
commodities, flows

The TIMES energy economy consists lufeetypes of entities:

I Technologiegalso calledorocessesare representations of physigédnts,
vehicles, or othedevices that transforsomecommodities into other
commoditiesTheymay be primary sources of commaodities (e.g. mining
processes, import processes), or transformation activities such as conversion
plants that produce electricity, engsgrocessing plants such as refinermsnd
use demand devices such as cars and heating sytabisansform energy into a
demand service;

I Commoditiexonsisting of energy carriers, energy services, materials, monetary
flows, and emissions. A commaylis produced byne or morgrocesssand/or
consumed by other processand

I Commoditylbwsare the links between processes and commod&iélsw is of
the same nature as a commodity but is attached to a particular process, and
represents one input one output of that proced$%or instance, electricity
produced by wind turbine type A at peripdime-slices, in regionr, is a
commodity flow.

® However, if the horizon has been lengthened beyond the years already covered by the data, additional data
for the new years at the end of the horizon must of edoesprovided.
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2.4.1 The RES

It is helpful to picture the relationships among these various entities using a network
diagram referred to as Reference Energy Syst¢RES). InaTIMES RES processes
are represented &sxesand commaodities agertical lines Commaodity fows are
represented as links between process boxes and commaodity lines

Figure 22 depicts a sm@ll portion d a hypothetical RES containing a single energy
service demand, namely residential space heating. There are theseesghce heating
technologies using thgas, electricity, and heating @hergy carrierecommodities)
respectively. These energy cars in turn are produced by other technologies,
represented in the diagram bregas plant, three electriciyenerating plants (gas fired,
coal fired, oil fired), ananeoll refinery.
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Figure 2.2 Partial view of a Reference Ener§ysten{links are oriented left to right)

To complete the production chain on the primary energy side, the diagram also represents
an extraction source for natural gas, an extraction source for coal, and two sources of
crude oil (one extracted domestigadind then transported by pipeline, and the other one
imported). This simple RES has a total of 13 commodities and 13 processes. Note that in
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the RES every time a commodity enters/leaves a process (via a particular flow) its name
is changed (e.g., wet gascomes dry gas, crude becomes pipeline crude). This simple
rule enables the intaronnections between the processes to be properly maintained
throughout the network.

To organize the RES, and inform the modeling system of the nature of its components,
the various technologies, commodities, and flows may be classifiedatg&achset
regroups components of a similar nature. The entities belonging to a set are referred to as
members, itemar element®f that set. The same item may appear in multigerielogy

or commodity sets. While the topology of the RES can be represented by-a multi
dimensional network, which maps the flow of the commoditiestbfromthe various
technologies, the set membership conveys the nature of the individual componests and
often most relevant to peptocessing (reportingatherthan influencing the model
structure itselfHowever, the TIMES commodities are still classified into sewdegbr
Groups There are five such groups: energy carriers, materials, energy service
emissions, and monetary flows. The use of these groups is essential in the definition of
some TIMES constraints, as discussedhapters.

2.4.2 Three classes of processes

We now give a brieoverview of three classes of processesttieat to belistinguished:
Processearegeneral processestorage processe andnter-regional tradingprocesses
(also callednter-regional exchange proces3eshe latter two classes need to be
distinguished from general processes due to their sganitionrequiringspecial rules
andsometimes a different set of indices.

2.4.2.1 General processes

In TIMES most processes are endowed with essentially the same attributes (with the
exceptions of storage and irt@gional exchange processsse beloy and unless th

user decides otherwise (e.g. by providing values for some attributes and ignoring others),
they have the same variables attached to them, and must obey similar constraints.
Therefore, the differentiation between the various species of pro¢essesnmalities)

is made through data specification only, thus eliminating the need to define specialized
membership setsinless desired for processing results. Most of the TIMES features (e.g.
sub-annual timeslice resolution, vintaginggreavailable for all proesses anthe

modeler chooses the features being assigned to a particular process by specifying a
corresponding indicator set (e.g. PRC_TSL, PRC_VINT)
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A general process recewene or more commodity inputs (inflows) and produmee or
more commodity otputs (outflows) in the same tirstice, period, and region.

As already mentioned, two classes of process do not follow these rules and deserve
separatelescriptionsnamelystorage processemd nter-regionalexchangerocesses

2.4.2.2 Storage processéslass STG)

This advanced feature of TIMES allows the méateto represent very intricate storage
activities from real life energy systen&torage processes are used to store a commodity
either between periods or between tigliees in the same period. A proceds specified

to be annter-period storage (IPS) processr commodityc, or asgeneral timeslice

storage (TSS)A special case of timslice storage is a stallednight-storage device
(NST)where the commodity farharging and the one for discharging the storage are
different.

An example of a night storage device is an electric heating techriblaigy charged

during the night using electricity and produces heat during the day. Severalitese

may be speciéd as charging timslices, the norspecified timeslices are assumed to be
discharging timeslices. However, when the process is anesel procesthat satisfies a
service demandhe discharging occurs according to the load curve of the corresponding
demand, and the chargingfigely optimized by TIMESacross timeslices Such an

exception for demand processes only exists if the demand is at the ANNUAL level. But if
the demand is not ANNUAL, discharging can only occur in thectarging timeslices.

An example of genergilme-slice storage is a pumped storage reservoir, where electricity
is consumed during the night to store water in a reservoir, water which is then used to
activate a turbinand produce electricitgt a different timeslice.

An example of an inteperiod storage process is a plant that accumulates organic refuse
in order to produce methane some years later.

Besides theommoditybeing stored, ther (auxiliary) commodity flows are also

permitted and may be defined in relatioritie stored commodity using the FLO_FUNC
and/or the ACT_FLO parameters. The activity of a storage process is interpreted as the
amount of the commodity being stored in the storage process. Accordingly the capacity
of a storage process describes the maxirmommodity amount that can be kept in
storage.
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2.4.2.3 Inter-regional exchange processetaSsIRE)

Inter-regional exchange (IRE) processes are used for trading commodities between
regions. Note that the name of the traded commodity is allowed to be differenihin
regions, depending on the chosen commodity names in both regions. There are two types
of trade in TIMES, biateral or multilateral.

Bi-lateral trade is the most detailed way to specify trade between regions. It takes place
between specific paird oegions. A pair of regions together with an exchange process
and the direction of the commaodity flow is first identified, and the model ensures that
trade through the exchange process is balanced between these two regions (the amount is
exported from reign A to region B must be imported by region B from region A,

possibly adjusted for trapertation losses). If trade should occur only in one direction
then only that direction is provided by the proper ordinal attribute. The process capacity
and the proess related costs (e.g. activity costs, investment costs) of the exchange
process may be described individually for both regions by specifying the cordaspo
parameters in each regiohhis allows for instance the investment cost of a trade process
to be shared between regions in user chosen proportions.

There are cases when it is not important to fully specify the pair of trading regions. An
example is the trading of greenhouse gas (GHG) emission permits in a global market. In
such cases, thaulti-lateral tradeoption decreases the size of the model. Matgral

trade is based on the idea that a common marketplace exists for a traded commodity with
several selling and several buying regions for the commodity (e.g. GHG emission
permits). To model a arketplace the user must first identify (or create) one region that
participates both in the production and consumption of the traded commodity. Then a
single exchange process is used to link all regions with the marketplace Nafien.
however that somiexibility is lost when using multilateral trade. For instance, it is not
possible to express transportation costs in a fully accurate manner, if such cost depends
upon the precise pair of trading regions in a specific way.

2.5 Data-driven model structure

It is useful to distinguish between a model@stureand a particulainstanceof its
implementation. A modelOs structure exemplifies its fundamental approach for
representing a probldkhit does not change from one implementation to the next. Al

TIMES models exploit an identicainderlyingstructure. However, because TIMES is
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data’ driven, theeffective structuref a particliar instance of a modelill vary

according to the data inpufBhis means that some of the TIMES features will not be
activated if the corresponding data is not specifi@d.example, in a muliegion model

one region may, as a matter of user data input, have undiscovered domestic oil reserves.
Accordingly, TIMES atomatically generates technologies and processes that account for
the cost of discovery and field development. If, alternatively, user supplied data indicate
that a region does not have undiscovered oil reserves no such technologies and processes
would beincluded in the representation of that regionOs Reference Energy System (RES,
see section 2.4). Due to this property TIMES may also be caltextlal generatothat,

based on the input information provided by the modeler, generates an instance of a
model.In the following, if not stated otherwise, the word 'model' is used with two
meaningsndifferently: the instance of a TIMES model or more generally the model
generator TIMES.

Thus, tre structure o TIMES modelis ultimately defined by variables and atjons

created fronthe union of the underlying TIMES equations dmel data input provided by

the user. This information collectively defines each TIMES regional model database, and
therefore the resulting mathematical representation of the RES foregaoh. The

database itself contains both qualitative and quantitative data.

Thequalitative dataincludes, for example, the list of commodities, and the list of those
technologies that the modeler feels are applicable (to each region) over a speuwsied ti
horizon. This information may be further classified into subgroups, for example
commodities may include energy carriers (themselves split by-{ge, fossil, nuclear,
renewable, ety, materials, emissions, energy services.

Quantitative datain contrast, contains the technological and economic parameter
assumptions specific to each technology, region, and time period. When constructing
multi-region models it is often the case that a given technology is available for use in two
or more regions; heever, cost and performance assumptions may be quite diffefent. T
word attribute designatedoth qualitative and quantitative elements of the TIMES
modeling system.

" Data in this context refers to parameter assumptions, technology characteristics, projections of energy
service demands, etc. It does not refer to historical data series.
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2.6 A brief overview of the TIMES attributes

Due to the data driven nature of TIMES (seetion 2.5), all TIMES constraints are

activated and defined by specifying some attributes. Attributes are attached to processes,
to commodities, to flows, or to special variables that have been created to define new
TIMES featuresindeed, TIMES hasmanynewattributes that were not available in

earlier versionscorresponihg to powerful new features that confer additionaddeling
flexibility. The complete lisbf attributess fully describedn section 3of PART II, and

we provide below only suaect comments on the types of attribute attached to each

entity of the RES or to the RES as a whaéldditional attribute definitions magisobe

included in the chaters describing new features or variants of the TIMES generator.

Attributes may beardind (numbers) oordinal (lists, sets).For examfe, some ordinal
attributes are defined for proces$o describe subsets of flows that are then used to
construct specific flow constraings described section5.4. PART Il, section2 shows
the complete list of TIMES sets.

The cardinal attributes are usually calfEtametersWe give below a brief idea of the
maintypes of parameters available in the TIMES mapbierator

2.6.1 Parameterattached t@rocesses
TIMES procesriented parameters fall inseveralgeneral categories.
2.6.1.1 Technical parameters

Technical parametercludeprocesfficiency, availability factor($) commodity
consumptions per unit of activity, shares of fuels per unit activity, teahlifie of the

process, construction lead time, dismantling {eaet and duration, amounts of the
commodities consumed (respectively released) by the construction (respectively
dismantling) of one unit of the process, and contribution to the peak etpiaitite

efficiency, availability factors, and commodity inputs and outputs of a process may be
defined in several flexible ways depending on the desired process flexibility, on the time
slice resolution chosen for the process and on thediioe resolutn of the

® There are a variety of availability factors: annual or seds&aah may be specified as a maximum factor
(the most frequent case), an exact factor, or even a minimum factor (in order to force some minimum
utilization of the capacity of some equipment, as in a backup gas turbine for instance).

24



commodities involved. Certain parameters are only relevant to special processes, such as
storage processes or processes that implement trade between regions.

2.6.1.2 Economic and policy parameters

A secondclass of process parametemnpriseseconomt and policy parameterthat

include a variety of costs attached to the investment, dismantling, maintenance, and
operation of grocessThe investment cost of the technology is incurred once at the time
of acquisition; the fixed annual cost is incurredle year per unit of the capacity of the
technology, as long as the technology is kept alive (even if it is not actively functioning);
the annual variable cost is incurred per unit of the activity of the techndfoggtdition

to coststaxes and subsidiéon investment and/or on activityyay be defined in a very
flexible manner. Other economic parameters ttweeconomic life of a process (the time
during which the investment cost of a process is amortized, wiagtdiffer from the
operational lifetine) and the process specific discount rate, also dalletie rate Both

these parametesgrve to calculate the annualized payments on the process investment
cost which enters the expression for the total cost of th¢sertion5.2).

2.6.1.3 Bounds

Anotherclassof parameter is used to define the rigandside of some constraint. Such
a parameterepresentstboundand its specification triggers the constraint on the
quantity concerned. Most frequntisedbounds ar¢hoseimposed on period
investment, gaacity, or activity of a procesklewly defined boundallow the user to
impose limits on thannual or annualizggayments at some period set of consecutive
years

A specialtype of bounding consists in imposing upper or lower limits omgtbeth rate
of technologiesThe most frequently quantities thus bounded are investment, capacity
and activity of a process, for which a simplified formulation has been devised.

Thegrowth constraintbelong to the class adfynamicboundsthatinvolve multiple

peliods Many other dynamic bounds may be defined by the Bsemds on cumulative
quantitiesare also very usefulTheaccumulation may be over the entire horizon or over
someuser definedet ofconsecutive year§ he variables on which such bounds apply
may quite varied, such gsrocesapacity processnvestmentprocessactivity, annual

or annuity paymentstc.
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All bounds may be of four types: lower (LO), upper (UP), equality (FX), or neutral (N).
The later case doesot introduce any restriction on the optimization, and is used only to
generate a new reporting quantity.

2.6.1.4 Other parameters

Features that were added to TIMES over the years require new parameters. For instance,
the Climate Module of TIME$chapter7), theLumpy Investment featur@chapterl0),

and several other$hese will be alluded to in the corresponding chapters of this Part I,

and more completely describedsection 2 and Appendices Bart Il.

An advanced feature allows the usedédine certairprocess parameteasvintaged(i.e.
dependent upon the date of installation of new capaéity)instance, the investment
cost and fuel efficiency of a specific type of automohiié depend on the model yéar

Finally, anotheradvanced IMES feature rendersome parametedependenalsoon the

ageof the technology. For instance, the annual maintenance cost of an automobile could
be defined to remain constant for say 3 years and then increaspaoif'edmanner

each year after théitd year.

2.6.2 Parameterattached t@aommodities

This subsection concerns parameters attached to each commodity, irrespective of how the
commodity is produced or consumed. The next subsection concerns commaodity flows.
Commodityoriented parameters fall mthe samecategoriess those attached to

processes

2.6.2.1 Technical parameters

Technical parameterassociated with commaodities include overall efficiency (for
instancethe overallelectricgrid efficiency), and the timslices over which that
commodity isto be tracked. For demand commodities, in additio® annual projected
demand and load curves (if the commodity has aasutmal timeslice resolution) can be
specified.

°Vintaging could alsde introduced by defining a new technology for each vintage year, but this approach
would be wasteful, as many parameters remain the same across all vintages.
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2.6.2.2 Economicand policyparameters

Economic parameteliacludeadditional costsaxes, and subsidies on the overall or net
production of a commodity. These cost elements are then added to a{irafhiit)

costs of that commodity. In the case of a demand service, additional parameters define
the demand curve (i.e. the relationshgiween the quantity of demand and its price).
These parameters are: the demandOspdemelasticitythe total allowed range of

variation of the demand value, attd number of steps to use for the discrete
approximation of the curve

Policy based pammetersnclude bounds (at each period or cumulativer user defined
yearg on thegrossor net production of a commaodity, or on the imports or exports of a
commodity by a region.

2.6.2.3 Bounds

In TIMES the net or the total production ehch commoditynay beexplicitly
represented bg variable if needed for imposing a bound or a tAxsimilar variety of
bounding parameters exists for commodities as for processes.

2.6.3 Parameters attached to commodity flows

A commodity flon{more simply, dlow) is an amount c& given commodity produced or
consumed by a given process. Some processes have several flows entering or leaving
them perhaps of different types (fuels, materials, demands, or emissions). In TIMES,
each flow has a variable attached to it, as well agakaitributes parametersr sets)

Flow related parameters confer enormous flexibility for modeling a large spectrum of
conditions

2.6.3.1 Technical parameters

Technical parameterslong with some set attributggermitfull control over the

maximum and/or minimum share a given input or output flow may take within the same
commodity group. For instance, a flexible turbine may accepinadibr gas as input, and
the modeler may use a parameter to limit the share of, sidyoat most 40% of the total
fuel input. Other parameteasid setslefine the amount of certain outflows in relation to
certain inflows (e.qg., efficiency, emission rate by fuel). For instance, in an oil refinery a
parameter may be used to set the total amwoiurgfined products equal to 92% of the
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total amount of crude oils (s) entering the refinery, or to calculate certain emissions as a
fixed proportion of the amount of oil consumed. If a flow has assutual timeslice
resolution, a load curve can be gfied for theflow. It is possible to define not only load
curves for a flow, but also bounds on the share of a flow in a specifisliceerelative

to the annual flow, e.g. the flow in the tirskice OWinteDayO has to be at least 10 % of
the total anoal flow. Refer to sectio®.4 describing TIMES constraints for details.
Cumulative bounds on a process flow are also allowed.

2.6.3.2 Economic and policy parameters

Economicor policy parametersnclude delivery and other variable costs, taxes and
subsidies atiched to an individual process flow.

2.6.3.3 Bounds

Bounds may be defined for flows in similar variety that exists for commodities.

2.6.4 Parameters attached to the entire RES

These parameters include currency conversion factors (in anegitbnal model),
regionspecific timeslice definitions, a regiespecific general discount rate, and
reference year for calculating the discounted total cost (objective function). In addition,
certain switcheare needed toontrol the activation of the data interpolation procedis
well as special model features toumed The complete set of switches is described in
Partlll .

2.7 Process and @ammodityclassification

Although TIMES does not explicitly differentiate processes or commaodities that belong
to different portions ofhe RES(with thenotableexceptios of storage and trading
processeskthere are three ways in which some differentiation does occur.

First, TIMES requirsthe definition of Primary Commodity Groupsc), i.e.sulsets of commoditiesf

the same naturentering or leaving a proceSIMES uilizesthe pcg to define the activity of the process,
and also its capacityror instance, thpcgof an oil refinery is defined as the set of eneiigyns produced
by the plant; and the activity of the refinery isishsimply thesum of all its energy outpufexcluding any
outputs that are non energy)
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Besides establishing the processivity and capacitythese groups are convenient aids
for defining certain complex quantities related to process flows, as didanstepter 5
and in PART 1] section 2.1

Even thoughTIMES does notequirethat the user provide many set memberships, the
TIMES reporing step does pass some set declarations to the VEBAesultprocessing
system%o facilitate construction afsuls analysis tables. These include process subsets
to distinguish demand devices, energy processes, material processes (by weight or
volume), refineries, electric production plants, coupled heat and power plants, heating
plants, storage technologiedadtistribution (link) technologies; and commodity subsets
for energy, useful energy demands (split into six aggregatsestibrs), environmental
indicators,currenciesand materials.

Besides the defition of pcgs and that ofEDA repating sets, there isthird instance

of commodity or process differentiatiovhich is not embedded in TIMES, but rests
entirelyon the modeler. A modeler may well want to choose process and commodity
names in a judicious manner so as to more easily fgeh&éim when browsing through

the input database or when examining results. As an exatm@EAM -World multi-

regional TIMES mode(Loulou, 2007 adoptsa namingconvention whereby the first

three charactersf a commodityOs nardenote the sector andetinext three the fuel (e.g.,
light fuel oil used in the residential sector is denoted RESLFO). Similarly, process names
are chosen so as to identify the sd@gtor or endise (first three characters), the main fuel
used (next three), and the specific teadbgy (last four). For instance, a standaddql)
residential water heater (RMY using electricity (ELC) is named RWHEDGO1.

Naming conventions may thus play a critical role in allowing the easy identification of an
elementOs position in the R&RI thudacilitatetheanalysis and reportingf results

Similarly, energy services may be labeled so that they are more easily recognized. For
instance, the first letter may indicate the broad sector (e.g. OTO for transport) and the
second letter designateyanomogenous susectors (e.g. ORO for road transport), the third
character being free.

In the same fashigiuels, materials, and emissiomay beidentified so as to
immediately designate the sector and-sabtor where they are produced or consumed.
To achieve thissome fuels have to changames when they change sectors. This is
accompished via processes whose primary role is to change the name of a fuel. In

%See Appendix A for the VEDAE, VEDA-BE, and ANSWER modeling and analysis systems, used to
mairtain and manage TIMES databases, conduct model runs, and organize results.
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addition, such a process may serve as a bearer of sector wide parameters such as
distribuion cost, price markup, tax, that are specific to that sector and fuel. For instance,
a tax may be levied on industrial distillate use but not on agricultural distillate use, even
though the two commodities are physically identical.
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3 Economic rationaleof the TIMES modeling approach

This chapter provides a detailed economic interpretation of TIMES and other partial
equilibrium models based on maximizing total surplus. Partial equilibrium models have
one common featu@they simultaneously configure tipeoduction and consumption of
commodities (i.e. fuels, materials, and energy services) and their prices. The price of
producing a commodity affects the demand for that commaodity, while at the same time
the demand affects the commodityOs price. A markeidgo have reached an

equilibrium at pricep* and quantities]* when no consumer wishes to purchase less than
g* and no producer wishes to produce more tftaat pricep*. Bothp* andqg* are

vectors whose dimension is equal to the number of diffe@ntmodities being modeled.
As will be explained below, when all markets are in equilibrium the total economic
surplus is maximized.

The concept of total surplus maximization extends the direct cost minimization approach
upon which earlier bottorap energ system models were based. These simpler models
had fixed energy service demands, and thus were limited to minimizing the cost of
supplying these demands. In contrast, the TIMES demands for energy services are
themselves elastic to their own prices, thliswing the model to computeb@na fide
supplydemand equilibrium. This feature is a fundamental step toward capturing the main
feedback from the economy to the energy system.

Section 3.1 provides a brief review of different types of energy models01$82

discusses the economic rationale of the TIMES model with emphasis on the features that
distinguish TIMES from othdpottomup models (such as the eamcarnations of

MARKAL, see Fishbone and Abilock, 198hdBerger et al., 1992, though MARKAL

has sincebeen extended beyond these early versi@ejtion 3.3 describes the details of
how price elastic demands are modeled in TIMES, and section 3.4 provides additional
discussion of the economic properties of the model.

3.1. A brief classification of eergy models

Many energy models are in current use around the world, each designed to emphasize a
particular facet of interest. Differences include: economic rationale, level of
disaggregation of the variables, time horizon over which decisions are(wiadR is

closely related to the type of decisiphs., only operational planning or also investment
decision$, and geographic scope. One of the most significant differentiating features
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among energy models is the degree of detail with which commodiiieteehnologies
are represented, which will guide our classification of modédstwo major classess
explained in the following very streamlined classification

3.1.1 OToglownO wdels

At one end of the spectrum are aggreg&ederal Equilibrium(GE) malels. In these

each sector is represented by a production function designed to simulate the potential
substitutions between the main factors of production (also highly aggregated into a few
variables such as: energy, capital, and labor) in the produdteach sectorOs output. In
this model category are found a number of models of national or global energy systems.
These models are usuattalled OtolownO, because they represent an entire economy
via a relatively small number of aggregate variablesesptions. In these models,
production function parameters are calculated for each sector such that inputs and outputs
reproduce a single base historical y&dn policy runs, the mix of inputérequired to
produce one unit of a sectorOs output is alldwedry according to useelected

elasticities of substitution. Sectoral production functions most typically have the
following general form:

X, = A(B¢ "K! +B, "L + B, "E{ ) 31)

where Xsis the output of sect@,
Ks, Ls, andEs are the inputs of capital, labor and energy needed to
produce one unit of output in sec®r
I is the elasticity of substitution parameter,
Ao and theBOs are scaling coefficients.

The choice of determines the ease or difficulty with which one proidumctactor may

be substituted for another: the smalles (but still greater than or equal to 1), the easier

it is to substitute the factors to produce the same amount of output from$ s

note that the degree of factor substitutability doesapt among the factors of

productionN the ease with which capital can be substituted for labor is equal to the ease

" These models assume that the relationships (as defined by the form of the production functions as well as
the calculated parameters) between sector level inputs and outputegqudibrium in the base year.

12 Most models use inputs such as labor, energy, and capital, but other input factors may conceivably be
added, such as arable land, water, or even technical-knowSimilarly, labor may be further subdivided

into several ategories.
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with which capital can be substituted for energy, while maintaining the same level of
output. GE models may also use alternate formsaafuymtion function (3L), but retain
the basic idea of an explicit substitutability of production factors.

3.1.2 OBottorupO mdels

At the other end of the spectrum are the very detagetinology explicimodels that

focus primarily on the energy sector of @onomy. In these models, each important
energyusing technology is identified by a detailed description of its inputs, outputs, unit
costs, and several other technical and economic characteristihese soalled
ObottorupO models, a sector is ditnged by a (usually large) number of logically
arranged technologies, linked together by their inputs and outmusr(oditieswhich

may be energy forms earriers materials, emissions and/or demand services). Some
bottomup models compute a partiawelibrium via maximization of the total net
(consumer and producer) surplus, while others simulate other types of behavior by
economic agents, as will be discussed below. In bettprmodels, one unit of sectoral
output (e.g., a billion vehicle kilometemsne billion tonnes transported by heavy trucks
or onepetajoule of residential cooling service) is produced using a mix of individual
technologiesO outputs. Thus the production function of a seciplittly constructed,
rather than explicitly spedéd as in more aggregated models. Such implicit production
functions may be quite complex, depending on the complexity of the reference energy
system of each sector (SRES).

3.1.3 Hybrid approaches

While the above dichotomy applied fairly well to earlierdals, these distinctions now
tend to be somewhat blurred by advances in both categories of model. In the case of
aggregate tojplown models, several general equilibrium models now include a fair
amount of fuel and technology disaggregation in the key emeagiucing sectors (for
instance: electricity production, oil and gas supply). This is the case with MERGE
SGM", among others

In the other direction, the more advanced bottgprmodels are Oreaching upO to capture
some of the effects of the entire economy on the energy syBenT.IMES model has

3 Model for Evaluating Regional and Global Effects (Manne et al., 1995)
4 Second Generation Model (Edmonds et al., 1991)
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enduse demands (including demands for industrial output) that are sensitiver tothei
prices, and thus captwthe impact of rising energy prices on economic outputvasel
versa Recent incarnations of technoleggh modelgincluding TIMES)are multi
regional, and thus are able to consider the impacts of englajgd decisionen trade. It
is worth noting that while the multegional topdown models have always represented
trade, they have done so with a very limited set of traded commdditipgally one or
two, whereas there may be quite a number of traded energy formsagerials in mult
regional bottorrup models.

MARKAL -MACRO (Manne and Wend,992 and TIMESMACRO (Kypreos and
Lehtila, 2013 arehybrid mode$ combinirg the technological detail of MARKAL with a
succinct representation thfe macreeconomy consistingf@ single producing sector a
single regionBecause of its succinct singgector production function, MARKAL
MACRO is able to compute a general equilibrium in a single optimization Btepe
recently, TIMES_MACRO-MSA (section 12.2is based on thearnputation of a muki
regionalglobal equilibrium, but requisan iterative process to do so. MESSAGE
(Messner and Strubegger, 1996ks a bottoraup model based on the EFOM paradigm
with a macro module, and computes a global, rratiional equilibriuniteratively. The
NEMS (US EIA, 2000)model is another example of a full linkage between several
technology rich modules of the various energy subsectors and a set ofeoaicomic
equationsandrequires iterative resolution methods.

In spite of thesedvances in both classes of models, there remain important differences.
Specifically:

¥ Top-down models encompass macroeconomic variables beyond the energy sector
proper, such as wages, consumption, and interest rates, and

¥ Bottomup models have a rich representation of the variety of technologies
(existing and/or future) available to meet energy needs, and, they often have the
capability to track anuchwider variety of traded commoditie$hey are also
more adapted to thepresentation of micro policies targeting specific
technologies or commodities.

The topdown vs. lpttomup approach is not the only relevant diffecze among energy
models. Amongdp-down models, the scalled Computable General Equilibrium models
(CGE) cescribed above differ markedly from timaicro econometric modelShe latter

do not compute equilibrium solutions, but rather simulate the flows of capital and other
monetized quantities between sectors,(eag Meade, 199®n the LIFT model). They

use econometrically derived inpotitput coefficients to compute the impacts of these

34



flows on the main sectoral indicators, including economic output (GDP) and other
variables (labor, investments). The sector variables are fggagated into national
indicators of consumption, interest rate, GDP, labor, and wages.

Among technology explicit models also, two main classes are usually distinguished: the
first class is that of the partial equilibrium models such as MARKMESSAGE and

TIMES, that use optimization techniques to compute a least cost (or maximum surplus)
path for the energy system. The second class is tlsahafationmodels, where the
emphasis is on representing a system not governed purely by financial costsfigsd p

In these simulation models (e.¢IMS, Jaccard et al. 2003pvestment decisions taken

by a representative agent (firm or consumer) are only partially based on profit
maximization, and technologies may capture a share of the market even theaubfeth
cycle cost may be higher than that of other technologies. Simulation models use market
sharing formulas that preclude the easy computation of equilil@anheast not in a

single pass. The SAGEIS EIA, 2003 incarnation of the MARKAL model possses a
market sharing mechanism that allows it to reproduce certain behavioral characteristics of
observed markets.

3.2 ThecoreTIMES paradigm

In the rest of this chaptewe present the properties of ttm@e TIMES paradigm. As
will be seen irchapter8to 12 some of these properties are not applicablevers
importantTIMES variants. The reader should keep this caveat in mind when
contemplating the use of some features that are described irbtbleapters

Since certain portions of this and thexhsections require an understanding of the
concepts and terminology of Linear Programming, the reader requiring aupashthis
topic may first read\ppendix B and then, if needed, some standard textbook on LP,
such as Hillier and Lieberma@@09, Chv"tal (1983),or Schrijver (198. The
application of Linear Programming to microeconomic theory is covertaboin
historically important referenceGale (1960 and 1th edition 1989) and in Dorfman,
Samuelson, and Solow (1958, afB7 reprink

A brief description othe coreTIMES model generatowvould express that it is:

¥ Technologally explicit integrated
¥ Multi-regionat and
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¥ Partial equilibrium(with price elasticdemands for energy servicas)
competitive marketwith perfect foresightlt will be seen that such an equilibrium
entailsmarginal value pricingdf all commodities.

We now proceed to flesh out each of these properties.

3.2.1 A technologcally explicitintegratednodel

As already presented amapter 2 (and described in much mdegail in Part I} section

3), eachtechnology is described in TIMES by a number of technical and economic
parameters. Thus each technology is explicitly identified (given a unique name) and
distinguished from all others in the model. A mature TIMES mous} include several
thousand technologies in all sectors of the energy system (energy procurement,
conversion, processing, transmission, and&ses) in each region. Thus TIMES is not
only technologeally explicit, it is tecimology richand it is integradas well.

Furthermore, the number of technologies and their relative topology may be changed at
will, purely via data input specification, without the user ever having to modify the
modelOs equations. The model is thus to a large estandriven

3.2.2 Multi-regional

Some existing TIMES modetompriseseveral dozenegional modulesor more The
number of regions in a model is limited only by the difficulty of solving LPOs of very
large size. The individual regional modules are linked by energy amtiahd@tading
variables, and by emission permit trading variables, if desiredinkieg variables
transform the set of regional modules intsirglemulti-regional (possibly global)
energy model, where actions taken in one region may affect all etjfiens. This feature
is essential when global as well as regional energy and emission policies are being
simulated. Thus a multegional TIMES model is geographically integrated.

3.2.3 Partial equilibrium

The core version ofIMES computes a partial equililorn on energy markets. This
means that the model computes bothflines of energy forms and materials as well as
their prices in such a way that, at the prices computed by the model, the suppliers of
energy produce exactly the amounts that the consumeevgiling to buy. This
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equilibrium feature is present at every stage of the energy system: primary energy forms,
secondary energy forms, and energy servicéssupplydemand equilibrium model has

asits economic rationale the maximization of the totaptus, defined as the sum aif
supplier€and consumefsurpluses. The mathematical method used to maximize the
surplus must be adapted to the particular mathematical properties of the model. In
TIMES, these properties are as follows:

¥ Outputs of a teaiplogy are linear functions of its inputubsection 3.2.3.19
¥ Total economic surplus is maximized over the entire horf3¢h3.2) and
¥ Energy markets are competitive, with perfect fores{gt#.3.3§".

As a result of these assumptions the followadgitional properties hold:

¥ The market price of each commodity is equal to its marginal value in the overall
system(3.2.4); and
¥ Each economic agent maximizes its own profit or ut{&y 5).

3.2.3.1 Linearity

A linear inputto-output relationship first mearthat each technology represented may be
implemented at any capacity, from zero to some upper limit, without economies or dis
economies of scale. In a real economy, a given technology is usually available in discrete
sizes, rather than on a continuumpérticular, for some real life technologies, there may

be a minimum size below which the technologgy notbe implemented (or else at a
prohibitive cost), as for instance a nuclear power plant, or a hydroelectric project. In such
cases, because TIMES asws that all technologies may be implemented in any size, it
may happen that the modelOs solution shows some technologyOs capacity at an
unrealistically small sizdt shauld howeverbe noted thain most applications, such a
situation is relatively infregent and often innocuous, since the scope of application is at
the country or regionOs level, and thus large enough so that small capacities are unlikely
to occur.

9t has been argued, based on strong experimental evidence, that the change in demands for energy
services indeed capturd'e main economic impact of energy system policies on the economy at large
(Loulou and Kanudia, 2000)

18 This property does not hold in three TIMES extensions presented in Chapti2s 10

" These two properties do not hold in the tistepped extension GIMES (chapter 9) and in Stochastic
TIMES (Chapter 8.)
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On the other hand, there may be situations where plant size matters, for instance when the
region being modeled is very small. In such cases, it is possible to enforce a rule by
which certain capacities are allowed only in multiples of a given size (e.g., build or not a
gas pipeline), by introducingteger variablesThis option, referred tasaumpy

investment (LI)is available in TIMES and is discussecchmpterl0. This approach

should, however, be used sparingly becaus®itgreatly increase solution time

It is the linearity property that allows the TIMES equilibrium to be computiedy us

Linear Programming techniques. In the case where economies of scale or some other
nonconvex relationship is important to the problem being investigated, the optimization
program would no longer be linear or even convex. We shall examine susincase
chapters 9 to 12

We must now mention a common misconception regarding linedréyatt tha TIMES
equations are linealoes not mean that production functions behave in a linear fgshion

far from it Indeed, the TIMES production functions are usually highlylireear

(although convex);onsisting ofa stepped sequence of linear functions. As a simple
example, a supply of some resouicalmost alwaysepresented as a sequence of
segments, each witising (but constant withianinterval) unit cost. The modeler

defines the OwidthO of each interval so that the resulting supply curve may simulate any
nonlinear convex function. In brief, ddsonomies of scale aeasily represented in

linear models

3.2.3.2 Maximizationof total surplus: Price equalsanginal value

Thetotal surplusof an economy is the sum of the suppliers® and the consumersO
surpluses. The tersupplierdesignates any economic agent that producesgqeslls)

one or more commodities i,en TIMES, an energy form, a material, an emission permit,
and/or an energy service.obnsumeis a buyer of one or more commodities. In TIMES,
the suppliers of a commodity are technologies that procure a given commodity, and the
consumers of a commoyliaire technologies @ervice segmentbat consume a given
commodity. Som¢indeed mostjechnologiesreboth suppliers and consumers.
Therefore, for each commodity the RES definesmaplexset of suppliers and

consumers.

It is customary in microeconaics to represent the set of suppliers of a commodity by
theirinverse production functigrthat plots the marginal production cost of the
commodity (vertical axis) as a function of the quantity supplied (horizontal axis). In
TIMES, as in other linear optiization models, the supply curve of a commydaitith

the exception of erdse demandss entirely determined endogenously by the model. |
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is a standard result of Linear Programming theory that the inverse supply function is step
wise constant and inaeing in each factoséeFigures 3.1 and 3f8r the case of a

single commodit}?). Each horizontal step of the inverse supply function indicates that

the commodity is produced by a certain technology or set of technologies in a strictly
linear fashion. Ashe quantity produced increases, one or more resources in the mix
(either a technological potential or some resourceOs availability) is exhausted, and
therefore the system must start using a different (more expensive) technology or set of
technologies irder to produce additional units of the commaodity, albeit at higher unit
cost. Thus, each change in production mix generates one step of the staircase production
function with a value higher than the preceding step. The width of any particular step
depend upon the technological potential and/or resource availability associated with the
set of technologies represented by that step.

Pricea
c6 C
Supply Curve
T _ Equillbrium
sd S 1 Demand Curve
1
1
1
1
| L
1
1
1
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Q  Q Quantiy

Figure 3.1 Equilibrium in the case of an energy form: the model implicitly constructs
both the supply and the demand cur{reste that the equilibrium is multiple in this
configuration)

In a similar manner, each TIMBBodelinstance defines a series of inverse daiina
functions. In the case of demands, two cases are distinguished. First, if the commodity in
question is an energy carrier whose production and consumption are endogenous to the
model, then its demand functionimsplicitly constructed within TIMES, and i step

8 This is so because in Linear Programming the shadow price of a constraint remains constant over a
certain interval, and then changes abruptly, giving rise to a stepwise constant functional shape.
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wise constant, decreasing function of the quantity demanded, as illustr&igdre3.1

for a single commaodity. If on the other hand the commodity is a demand for an energy
service, then its demand curvelefined by the usefia the spcification of the own

price elasticity of that demand, and the curve is in this instance a smoothly decreasing
curve as illustrateih Figure3.2". In both cases, the suppiigmand equilibrium is at the
intersection of the supply function and the demand funcéiod,corresponds to an
equilibrium quantity @ and an equilibrium price?. At price R, suppliers are willing

to supply the quantity €and consumers are willing to buy exactly that same quangity Q
Of course, the TIMES equilibrium concemsarge numér of commodities
simultaneouslyandthusthe equilibrium is a mukdimensional analog of the above,
where Qand R are now vectors rather than scalars.

As alreadymentioned, the demand curves of most TIMES commoditiee(iexgy

carriers, materiaJssmission permits) are implicitly constructed endogenously as an
integral part of the solution of the LP. Feach commodity that i®n energy service, the
userexplicitly defines the demarfdnctionby specifying its own price elasticitin

TIMES, eachenergy service demand is assumed to have a constant own price elasticity
function of the form fee Figure 2):

DM/DMg = (P/R)E (3-2)

Where DMy ,Po} is a reference pair of demand and price values for that energy service
over the forecast horizonndE is the (negative) own price elasticity of that energy
service demand, apecifiedby the user (note thatthough nobbvious from the

notation, this price elasticity may vary over time). The pBiK{, Po} is obtained by

solving TIMES for a referercscenario. More preciselpMyis the demand projection
estimated by the user in the refereacenariqusuallybased upon explicitly defined
relationships to economic and demographic drijvensd B is the shadow price of that
energy service demamdlthe dual solution othe reference case scenaiiibe precise
manner in which the demand functions are discretized and incorporated in the TIMES
objective function is explained chapter.

Using Figure 3.hs an example, the definition of the supplistgPlus corresponding to
a certain point S on the inverse supply curve is the difference between the total revenue

9 This smooth curve will be discretized later for computational purposes, and thus become a staircase
function, asddescribed irsection 4.2

%0 As may be seen ifigure 3.1,the equilibrium is not necessarily unique. In the case shown, any point on
the verticalsegment containing the equilibrium is also an equilibrium, with the same quaabiyt @

different price. In other situations, the multiple equilibria may have a single price but multiple quantities.
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and the total cost of supplying a commaodity, i.e.ghass profit. In Figure 3,%he

surplus is thus the area between the horizontal seig®®&0 and the inverse supply curve.
Similarly, the consumersO surplus for a point C on the inverse demand aigfieeis

as the area betwedéine segment CCO and the inverse demand curve. This area is a
consumerQOs analog to a producerOs profit; neaiegly it is the cumulative opportunity
gain of all consumers who purchase the commodity at a price lower than the price they
would have been willing to pa¥hus, br a given quantity Q, the total surplus (suppliersO
plus consumersO) is simply the aresvben the two inverse curves situated at the left of
Q. It should be clear from Figure 3tat the total surplus is maximized when Q is
exactlyequal to the equilibrium quantityeQTherefore, we may state (in the single
commodity case) the following Egalence Principle:

OThe suppigemand equilibrium is reached when the total surplus is maxir@ized

This is a remarkably useful result, as it leads to a method for computing the equilibrium,
as will be see in much detail Chapter.

In themulti-dimensional case, the proof of the above statement is less obvious, and
requires a certain qualifying property (called the integrability property) to hold
(Samuelson, 1952, Takayama and Judge, 1972). One sufficient condition for the
integrability prgerty to be satisfied is realized when the cusse elasticities of any
two energy forms are equal, viz.

P, /1Q; =!R/1Q; foralli,]

In the case of commodities that @&mduseenergy services, these conditions are trivially
satisfied in TIMES because we have assumed zero cross price elasticities. In the case of
anendogenousnergy carrier, where the demand curve is implicitly derived, it is also

easy to show that the integratyilproperty is always satisfiétl Thus the equivalence
principle is valid in all cases.

L This results from the fact that in TIMES each piftis the shadow price of a balance constraint (see
section 5.4.% and may thus be (loosely) expressed as the derivative of the objective flmatitm

respect to the rigktandside of a balance constraint, ileF /! Q,. When that pricés further
differentiated with respect to another quan@yone gets F /! Q ¥! Qj , which, under mild
conditions is always equal th*F /! Q; ¥!'Q, as desired.
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In summary, the equivalence principle guarantees that the TIMES sigaplgnd

equilibrium maximizes total surplu§he total surplus concept has long been a mainstay

of social welfare economics because it takes into account both the surpluses of consumers
and of producer#

Pricea

Demand curve

Supply Curve

Equilibriun

=1

Q Quanty

Figure 3.2 Equilibrium in the case of an energy service: the user explmityides the
demand curve, usually using a simple functional f(see text for details)

Remark:In older versions of MARKAL, and in several other leasst bottorup

models, energy service demands are exogenously specified by the modeler, and only the
cost of supplying these energy services is minimized. Saekais illustrated in Figure
3.3where the Oinverse demand curveO is a vertical line. The objective of such models
was simply the minimization of the total cost of meeting exogenously spdewield of

energy service.

*2See e.g. Samuelson and Nordhaus (1977)
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Figure 3.3. Equilibrium when an energy service demand is fixed
3.2.3.3 Competitive energy markets with perfect foresight

Competitive energy markets are characterized by perfect information and atomic
economic agents, which together preclude any of them from exercising market power.
That is, neither the levelt whichany individual producer supplies, nor the level any
individual consumeacauires affects the equilibrium market price (because there are
many other buyers and sellers to replace them). It is a standard result of microeconomic
theory that the assumption of competitive markets entails that the market price of a
commodity is equal to its marginal value in the econg8amuelson1952. This is of

course also verified in the TIMES economy, as discussed in the next subsection.

Of course real world energy markets are not always competitive. For instance, arcelectri
utility company may be @egulatedmonopoly within an entire country, or a cartel of oll
producing countries may have market powe oil markets. There are ways around these
so-called Omarket imperfectionsO. For instarmecerning the monopolistidility, a

socially desirable approach would be to first useaggimption of marginal cost pricing

S0 as to determire socially optimaplanfor the monopolyand then to have the

regulatory agencgnforce such a plan, including the principle of margieat pricing

The case of the oil producéeartel is less simple, since there is no global regylato
agency to ensure that @itoducers act in a socially optimal fashion. Therehareever
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ways to use equilibrium models such as TIMES®rder to faithfully represent the market
power of certain economic agents, as exemplifiedlaulou et al., 200y

In the core version ofIMES, the perfect information assumption extends to the entire
planning horizon, so that each agent has peféeesight, i.e. complete knowledge of the
marketOs parameters, present and future. Hence, the equilibrium is computed by
maximizing total surplus in one pass for the entire set of periods. Such a farsighted
equilibrium is also called ainter-temporaldynamicequilibrium

Note that there are at least two ways in which the perfect foresight assumption may be
voided in one variant, agents are assumed to have foresight over a limited portion of the
horizon, say oner a fewperiods. Suchan assumption of limited foresight is embodied in
the TIMES feature discussed in chap®is well as in th& AGE variant of MARKAL

(US EIA, 2002) In another variant, foresight is assumed to be imperfect, meaning that
agents may onlprobabilisticallyknow certain key future events. Thassumption is at

the basis of th@IMES Stochastic Programming optiogiscussed in chapt8r

3.2.4 Marginal value pricing

We have seen in the preceding subsections that the TIMES equilibrium occurs at the
intersection of th inverse supply and inverse demand curves. It follows that the
equilibrium prices are equal to the marginal system values of the various commodities.
From a different angle, the duality theory of Lin®aogramming¢hapter %) indicates

that for each constraint of the TIMES linear program theralisahvariable This dual
variable (when an optimal solution is reached) is also called the constshiatiOs/

price’® and is equal to the marginal change of the objective function penareaise of

the constraintOs righandside. For instangéhe shadow price of the balance constraint
of a commodity (whether it be an energy form, material, a service demand, or an
emission) represents the competitive market price of the commodity.

%3 The termshadow pricés often used in the mathematical economics literature, whenever the price is
derived from the marginal value of a commodity. The qualifier OshadowO is used to distinguish the
competitive market price from the price observed in the real world, which endifferent, as is the case in
regulated industries or in sectors where either consumers or producers exercise market power, or again
when other market imperfections exist. When the equilibrium is computed using LP optimization, as is the
case for TIMES, e shadow price of each commodity is computed as the dual variable of that commodityOs
balance constrainsee chapter4l
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Thefact that the price of a commodity is equal to its marginal value is an important

feature of competitive markets. Duality theory does not necessarily indicate that the
marginal value of a commodity is equal to the marginal costazfucingthat

commodity.For instance, in the equilibrium shown in Fig@rdthe price does not

correspond t@anymarginal supply cost, since it is situated at a discontinuity of the

inverse supply curve. In this case, the price is precisely determined by demand rather than
by supply, and the terrmarginal cost pricingso often used in the context of optimizing
models) issensustricto incorrect. The ternrmarginal value pricings a more appropriate

term to use.

It is important tareiteratethat marginal value pricindoes notmply that suppliers have

zero profit Profit is exactly equal to the suppliersO surplus, and is generally positive.
Only the last few units produced may have zero profit, if, and when, their production cost
equals the equilibrium price

In TIMES the shdow prices of commodities play a very important diagnostic role. If

some shadow price is clearly out of line (i.e. if it seems much too small or too large
compared to the anticipated market prices), this indicates that the modelOs database may
contain somerrors. The examination of shadow prices is just as important as the

analysis of the quantities produced and consumed of each commodity and of the
technological investments.

Price 4

Demand curve

Supply Curve

b

Qe Quanti:ty

Figure 3.4. Case where the equilibrium price is mofual to any marginal supply cost.
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3.2.5 Profit maximization: the Invisible Hand

An interesting property may be derived from the assumptions of competitiveness. While
the avowed objective of the TIMES model is to maximize the overall surplus, it is also
true hat each economic agent in TIMES maximizes its sumplus This property is akin

to the famous Oinvisible handd property of competitive markets, and may be established
rigorously by the following theorem that we state in an informal manner:

TheoremLet (p*,g*) be a pair of equilibrium vectorshat maximize total surplus
If we now replace the original TIMES linear program by one wiadre
commodity prices arxedat value p*,and we let each agent maximize its own
surplus the vector of optimal quatigs produced or purchased by the agexi$®
maximizes the total surpffs

This property is important inasmuch as it provides an alternative justification for the class
of equilibria based on the maximization of total surplus. It is now possible tahghift
modelOs rationale from a global, societal totalGurplus maximization), to a local,
decentralized one (individual utility maximization). Of course, the equivalence suggested
by the theorem is valid only insofar as the marginal value pricing mischasstrictly
enforcedN that is, neitheanindividual producer noanindividual consumemay affect

market pricell both are price takers. Clearomemarkets are not competitive in the

sense the term has been used here. For example, the behavewdfilgpioducers has a
dramatic impact on world oil priceshichthen depart from their marginal system value.
Market powe?® may also exist in cases where a few consumers dominate a market.

?*However, the resulting Linear Program has multiple optimal solutions. Therefore, aldfoisgin

optimal solution, it is not necsarily the one found when the modified LP is solved.

% An agent has market power if its decisions, all other things being equal, have an impact on the market
price. Monopolies and oligopolies are example of markets where one or several agents haveomarket p
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4 Core TIMES model: Mathematics of the computation of the
supply-demand equilibrium

In the preceding chapter, we have seen that TIMES does more than minimize the cost of
supplying energy services. Instead, it computes a suggshand equilibrium where both
theenergysuppliesand the energy service demands are endogenously determined by the
model. The equilibrium is driven by the usiafined specification of demand functions,
which determine how each energy service demand varies as a functiorcdréme

market price of theenergy service. The TIMES code assumes that each demand has
constant owsprice elasticity in a given time period, and that cross price elasticities are
zero.We have also seen thatomomic theory establishes that the equilibrium thus
computed corresposdo the maximization of the net total surplus, defined as the sum of
the suppliersO and consumersO surpWselsave argued in section 3.2 tha total net
surplus has often been considered a valid metric of societal welfare in microeconomic
literature and this fact confers strong validity to the equilibrium computed by TIMES.
Thus although TIMES falls short of computing a general equilibrium, it does capture a
major element of the feedback effects not previously accounted for in bopt@mergy
modesk.

In this chapter we provide the detailsfwow the equilibrium isransformed into an
optimization problem and solved accordingly

Historically, the approach was firgsedin the Project Independence Energy System

(PIES, see Hogan, 1975), although in the context of demands for final energy rather than
for energy services as in TIMES or MARKALt.was then proposed for MARKAL

model by Tosato (1980) adtdorfer (1982),andlater made available as a standard
MARKAL option by Loulou and Lavigne (1995 he TIMES implementation is

identical to the MARKAL one.

4.1 Theoretical considerations: the Equivalence Theorem

The computational method is based on the equivalence theoresntees chapter 3,
which we restate here:

"A supply/demand economic equilibrium is reached when the sum of the producers and
the consumers surpluses is maximized"
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Figure 3.2 of Chapter 3 provides a graphical illustration of this theorem in a cage wher
only one commodity is considered.

4.2 Mathematics of the TIMES equilibrium

4.2.1 Defining demand functions
From chapter 3, we have the following demand function for each demand category
DM, /DM,"=(p./p))5 (4!

Or its inverse:
— 0 O\V/E,
p =p !(DM;/DM;)
where the superscript 000 indicates the reference case, and the ElastizEtyative.

Note also that the elasticity may have two different values, one for upward changes in
demand, the other for downward changes.

4.2.2 Formulating the TIMES equilibrium

With inelastic demand@.e. pure cost minimizationjhe TIMES model may be written
as the following Linear Program

Min c!X (4" 2)

st.  $VAR_ACT, (t) # DM, (t) =121 t=1.T (4"3)
k

and BIX#b (4" 4)

whereX is the vector of allTIMES variables and is the number of demand categories.
In words:

¥ (4-2) expressethe total discounted cost to be minimiz8ee chapter 5 for details
onthe list of TIMES variableX, and on the costectorc.
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¥ (4-3) is the set of demand satisfaction constraints (wheréAlie ACT variables
are theactivity levelsof enduse technologies, and tB right-handsides are
the exogenous demands to satisfy).

¥ (4-4)is the set of all othéFIMES constraints, which need not be exatiéd here,
and argpresentedn chapter 5

When demand arelastic TIMES mustcomputea supply/demand equilibriuwf the
optimization problen{4-2) through 4-4), where the demand side adgisi changes in
prices, and therevailing demand priceme the marginal costs of the demand categories
(i.e.pi is the marginal cost of producing dendDM;). A priori this seems to be a

difficult task, because thdemandorices are computed as part of th&lsolution tothat
optimization problemThe Equivalence Theorem, however, statesttiequilibrium is
reached as the solution of the follogimathematical program, where the objective is to
maximize the net total surplus:

DM; (1) +
Max , . ’(*go(t)!;;Dl\/liO(t)&‘g"’E@é ' g'51dg- &c!'X (4&5)
i t a ’
st. . VAR_ACT,,(t) &DM,(t)/ 0 i=1.,1;t=1..T  (4&6)
k
and B!X/ b (487)

whereX is the vector of allTIMES variables,4-5) expresses the total net surplus, and
DM(t)is now a vector ovariablesin (4-6), rather thariixed demands. The integral id-(
5) is easily computed, yielding the following maximization program:

Max ' ' (pf’(t)!;DMP(t)%E%DMi(t)“”E/(1+1/Ei))&c!x (4&5)'
st. ' VAR_ACT,(t) ( DM,(t) i=1.,1:t=1..T (486)'
BIX (b (487)

We are almost there, but not quite, since[Bd;(t)] 5 are non linear expressions and
thus not directly usable in an L.P.
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4.2.3 Linearization of the Mathematical Program

The Mathematical Program embodied4r5)0, 4-6)0 and47)O has a ndmear

objective function. Because the latter is separable (i.e. does not include cross terms) and
concave in th®M; variables, each ofdgtterms is easily linearized by piesgse linear
functions which approximate the integrals4r5). This is the same as saying that the
inverse demand curves are approximated by staircase functions, as illustrated in figure
4.1. By so doing, the resulggnoptimization problem becomes linear again. The
linearization proceeds as follows.

a) For each demand categargnd each time peridglthe user selects a range
R(t)i, i.e. the distance between some valDB&(t)min andDM;(t)max. The user
estimats that the demand valu2M;(t) will always remairwithin such a range
even after adjustment for price effects (for instance the range could be equal to
the reference demarmM®(t) plus or minus 50%).

b)  Select a grid that divides each range into a numieéequal width intervals.
Let §(t) be the resulting common width of the g&{t)= Ri(t)/n. See Figure
4.1 for a sketch of the ndimear expression and of its stepse constant
approximation The number of steps, should be chosen so that 8tepwise
constant approximation remains close to the exact value of the function.

c) For each demand segmé@i;(t) definen stepvariables (one per grid
interval), denoted i(t), . (t), E, sni(t). Eachsvariable is bounded below by 0
and above bg(t). One may now replace aquations4-5)0 and46)O each
DMi;(t) variable by the sum of thestep variables, and each rlamear term in
the objective function by a weighted sum of th&tepvariables, as follows:

n

+" s () 418

=

DM, (t) = DM (t)

min
and

DM, ()5 1| DM(t)mn- +" A5 (D)¥s,, (1) 4#9
j=1
TheA, i term is equal to the value of the inverse demand function ¢t themand at the
mid-point of thei™ interval. The resulting Mathematical Program is now fully linearized.

Since théA,;: terms have decreasing values (due to the concavity of the curve), the
optimization will always make sure that thevariablesare increasedonsecutively and
in the correct order, thus respecting the steg®e constant approximation described
abowe.
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Remark:nstead of maximizing the linearized objective function, TIMES minimizes its
negative, which then has the dimension of a cost. The portion of that cost representing the
negative of the consumer surplus is akin teedfare loss.

A

Ai; (1)

x:DMi(I)

.
A

Range =R(t)

Figure 4.1. Stepwiseconstantapproximation of the nehinear terms in the objective
function

4.2.4 Calibration of the demand functions

Besides selecting elasticities for the various demand categories, the user must evaluate
each constarK;(t). To do so, we have seen that one needs to know one point on each
demand function in each time peripg?(t),DM%(t) }. To determine such a point, we
perform a single preliminary run of the inelastic TIMES model (with exogeDPt)),

and use the reding shadow pricep’i(t) for all demand constraints, in all time periods

for each region.
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4.2.5 Computational considerations

Each demand segment that is elastic to its own price requires the definition of as many
variables as there are steps in the disecegieesentation of the demand curve (both

upward and down if desired), for each period and region. Each such variable has an upper
bound, but is otherwise involved in no new constraint. Therefore, the linear program is
augmented by a number of variableg, does not have more constraints than the initial
inelastic LP (with the exception of the upper bounds). It is well known that with modern
LP codes the number of variables has little or no impact on computational time in Linear
Programming, whether the valbles are upper bounded or not. Therefore, the inclusion in
TIMES of elastic demands has a very minor impact on computational time or on the
tractability of the resulting LP. This is an important observation in view of the very large
LPOs that result frorapresenting mukiegional and global models in TIMES.

4.2.6 Interpreting TIMES costs, surplus, and prices

It is important to note that, instead of maximizing the net total surplus, TIMES minimizes
its negative (plus a constant), obtained by changing the sig@xpression4-5). Forthis

and other reasons, it is inappropriate to pay too much attention to the meaning of the
absoluteobjective function values. Rather, examining the difference between the
objective function values of two scenarios is a farengeful exercise. That difference is

of course, the negative of the difference between the net total surpluses of the two
scenario runs.

Note again that the popular interpretation of shadow prices asattggnal costof

model constraints is inaccuratather, the shadow price of a constraint is, by definition,
the incremental value of the objective function per unit of that constraintOs right hand side
(RHS). The interpretation is that of an amounsurplus losger unit of the constraintOs
RHS. Thedifference is subtle but nevertheless important. For instance, the shadow price
of the electricity balance constraint is not necessarily the marginal cost of producing
electricity. Indeed, when the RHS of the balanced constraint is increased by ooeaunit,

of two things may occur: either the systproducesone more unit of electricity, or else

the systentonsumesne unit less of electricity (perhaps by choosing more efficient end
use devices or by reducing an electrigittensive energy service, ettt)s therefore

correct to speak of shadow prices as the margiysiem valuef a resource, rather than

the marginatostof procuring that resource.
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5 Core TIMES Model: A simplified description of the
Optimization Program (variables, objective,constraints)

This chapter contains a simplified formulation of doee TIMES Linear Program.

Mathematicdl, a TIMES instance is a Linear Prograaswasmentioned in the previous
chapter. ALinearProgram(LP for short)consists in the minimization enaximization of
anobjective functiorfdefined as #inearmathematical expression décision variables
subject tdinearconstraintsalso callecequation$®.

Very large instances of Linear Programs involvaognetimes million®f constraints and
variables may be formulataeagsing modern modeling languages suclGas/1S
(http://www.gams.com/help/index.jsmnd solved via powerful Linear Programming
optimizerd’. The Linear Program described in this chapter is much simplified, since it
ignores many exceptions and complexities that are not essential to a basic understanding
of the principles of the modeChapter 14ives additional details on general Linear
Progamming concepts. The full details of the parameters, variables, objective function,
and constraints of TIMES are givenRart Il ofthis documentatio(sections 3, 5, and 6)

A linearoptimization problem formulation consists of three types of entities:

I the decision variables:e. the unknowns, or endogenous quantities, to be
determined by the optimizatipn

I the objective functiarexpressing the criterion to be minimized or maximjzed
and,;

I theconstraints equations or inequalities involving the deaisivariables that
must be satisfied by the optimal solution.

5.1 Indices

The model data structures (sets and parameters), variables and equations use the
following indices:

% This rather improper term includes equality as well as inequality relationships between mathematical
expressions.

" For more information on ojphizers see Brooke et al., 1998
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r: indicates the region

t or v: time period;t corresponds to the current period, ansl used to indicate the
vintageyearof an investmentWhen a process is not vintaged tivent.

p: process (technology)

S: time-slice; this index is relevant only for usgéesignated commodities and
processes #t are tracked at finer than annual level (e.g. electricity, low
temperature heat, and perhaps natural gas, etc.)-slioeedefaults to
OANNUALO, indicating that a commodity is tracked only annually.

C: commodity (energy, material, emission, demand)

5.2 Decision ariables

The decision variables represent theicesto be made by the model, i.e. tineknowns
All TIMES variables are prefixed with the three |lest¢AR followed by an underscore.

Important remark : There are two possible choicgsncerninghe verymeaningof

some decision variables, namely those variables that represent yearlgifliosess
activities. In the original TIMES formulation, the activity of a process during some
periodt is consideredo be constanh all years constitutinthe period. This is illustrated

in panelM.a of Figure 5.).In thealternative option the activity variable is considered to
represent the valua a milestoneyearof each period, and the values at all other years is
linearly interpolated between tikkersecutivemilestoneyear values, as illustrated in
panelM.b). A milestone year is chosen close to the middle of a pefiud.second

option is similar to that of the EFOM and the MESSAGE mod#is.user is free to
choose either optioThe constraintand objective function presented below apply to the
first option (constant value of activity variables within a peridghpropriate changes in
constraints and objective function araahe for the alternative option, as explained in
section5.5, and more cmpletely inPart Il, section 6

The main kinds of decision variables in a TIMES model are:

VAR_NCAP(r,v,p) new capacity addition (investment) for technol@gyn periodv and
regionr. For all technologies thevalue corresponds to the vintage of phecessi.e.

year in which it is invested in. For vintaged technologies (declared as such by the user)
the vintage \) information is reflected in other process variables, discussed below.
Typical units are PJ/year for most energy technologies, Milbangs per year (for steel,
aluminum, and paper industries), Billion vehig&i@®meters per year (Bkm/year) or
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million cars for road vehicles, and GW for electricity equipment (1GW=31.536 PJ/year),
etc.

"#$%& () "#$%& I"# $%&)

+$,#"/012.34"156$7$685%'9$& "#"'8%'961'6.$"154 "#$% &

" $9%68 () I"H$%& ' $Y%68r)

+$,-#"10; 2.34"156$75BBS "1 #<B6"#:%<16"&6=""64".>$&&€%$'69.%"?.
9-55"99$7"#$%&9

Figure 5.1Process activity in the original TIMEformulation (top) and Linear variant
(bottom)

VAR_RCAP(r,v,t,p) Amount of capacity that is newly retiredgariodt. The new
retirements will reduce the available capacity of vintageperiodt and in all successive
periodst> t by the value of the variable. This new feature was not available in early
versions of TIMES. Note carefully that the feature must be activated by a special switch
in order to become effectivBlote also thaadditionala new advanced feature allows the
use to specify that capacity retirement may only occur in lump amounts that are either
equal to the entire remaining capacity or equal to a multiple of some user defined block.
Consulithe separate technicabte TIMES Early Retirement of Capacityr detaik.

VAR_DRCAP(r,v,t,p,j):Binary variabls used in formulating the special early retirement
equations. Two variablesay bedefined, one wheretirement must be for the entire
remaining capacit{j=1), another when retirement must bmaltiple of some block
defined by the user via parameRCAP_BLK (j=2).
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VAR_SCAP(r,v,t,p)Total amount of capacity that has been retired at péaod periods
preceding (seeaboveVAR_RCARaragraph).

CAP(r,v,t,p):installed capacity of procegsin regionr and period, optionally with
vintagev. It represents the total capac#yailableat periodt, considering the residual
capacity at the beginning of the modeling horizon aahding to itnew investments made
prior to and includingperiodt that have not reached their technical lifetiraed
subtracting retired capacityypical wits: same as investments. TBAP quantity,
although convenient for formulati@nd reportingpurposesis in factnot explicitly
defined in the modgbutis derived from theVAR_NCAPvariables androm data on past
investmentsprocesdifetimes, and any retirements

VAR_CAP(r,t,p): total installed capacity of technologyin regionr andperiod, all
vintages together. TRéAR_CAP variables are only defined when some bauorduser
constrains are specified for them. They do not enter any other equation.

Remark The lumpy investment option. There is a TIMES feature that allows the user to
impose that new additions to capacity neayy be done in predefined blocks. This

feature may be useful for technologies that are implementable only in discrete sizes such
as a nuclear plant, or a large hydroelectric project. The user should however be aware that
using his option voids some of ¢he@nomic properties of the adjbrium. This feature

is described in ChaptdiO of this part of the documentation.

VAR_ACT(r,v,t,p,s):activity level of technology, in regionr and period (optionally

vintagev and timeslices). Typical units: PJ foall energy technologieShesindex is

relevant only for processes that produce or consume commodities specifically declared as
time-sliced Moreover, it is the process that determines which time gliesil By

default only annual activitys tracled.

VAR_FLO(r,v,t,p,c,s):the quantity of commoditg consumed or produced by process
in regionr and period (optionally with vintages and timeslices). Typical units: PJ for
all energy technologie$he VAR_FLO variables confer considerable fledity to the
processes modeled in TIMES, as they allow the user to define flexible processes for
which input and/or output flows are not rigidly linked to the process activity.

VAR_SIN(r,v,t,p,c,s)VAR_SOUT(r,v,t,p,c,s)the quantity of commoditg stored or
discharged by storage procgsi time-slices, periodt (optionally with vintagev), and
regionr.
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VAR_IRE(r,vt,p,c,sexp and VAR_IRE(r,v.t,p,c,simp)®® quantity of commodite (PJ

per year) soldgxp) or purchasedrfip) by regionr through export (resp. import) process

p in periodt(optionally in timeslices). Note that the topology defined for the exchange
proces® specifies the traded commoditythe regiorr, and the regionwith which

regionr is trading commoditg. In the casef bi-lateral trading, if it is desired that

regionr shouldtrade with several other regions, each such trade requires the definition of
a separate Hateral exchange process. Note that it is also possible to definelatenél

trading relationships between regioand several other regionéby defining one bthe
regions as the common market for trade in commailly this case, the commodity is

Oput on the market® and may be bought by any other region participating in the market.
Thisapproachis convenient for global commodities such as emission permitside

oil. Finally, exogenous trading may also be modeled by specifyingtagion as an

external region. Exogenous trading is required for models that are not global, since
exchanges with nemodeled regions cannot be considered endogenous.

VAR_DEM(r,t,d): demand for endise energy serviakin regionr and period. It is a

true variable, even though the reference scenario, this variable is fixed by the user. In
alternatescenariofiowever VAR_DEM(r,t,d) may differ from the reference case
demand due to the responsiveness of demantisetio ownprices (based on each service
demandOs owprice elasticity). Note that in this simplified formulation, we do not show
the variables used to decomp@d#eM(r,t,d) into a sum of stevise quantitiesaswas
presented in chapter 4

Other variables:Several options that have been added to TIMES over the successive
versions require the definition of additional variables. They are alluded to in the sections
describing the new options, and described moragmiyan Part Il, and in additional
technical notes. AIsd@IMES has a number of commodity related variables that are not
strictly needed but are convenient for reporting purposes and/or for applying certain
bounds to them. Examples of such variablestheetotal amount produced of a

commodity YAR_COMPRD), or the total amount consumed of a commodity
(VAR_COMCON).

Important remark : It is useful to know that many variables (for instance the above two
accounting variables, but also the flow variables idesd earlier) add only a moderate
computational burden to the optimization process, thanks to the usechfciion

algorithmto detect and eliminate redundant variables and constraints before solving the

8 |RE stands for InteRegional Exchange
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LP. These variables and constraints are latastaied in the solution file for reporting
purposes.

5.3 TIMES objective function: discounted total system cost

5.3.1 The costs accounted for in the objective function

The Surplus Maximization objective is first transformed into an equivalent Cost
Minimization objective by taking the negative of the surplus, and calling/tiigethe

total system cosf his practice is in part inspired from historical custom from the days of
the fixed demand MARKAL model. The TIMES objective is therefore to minimize the
total 'cost of the system, properly augmented by the OcostO of lost demand. All cost
elements are appropriately discounted tse@rselected year.

In TIMES, the cost elements are defined at a finer level than the péfiole. the

TIMES constraints and varils are linked to period the components of the system
cost are expressed for eaakarof the horizon (and even for some years outside the
horizon). This choice is meant to provide a smoother, more realistic rendition of the
stream ofcostpayments inhlie energy system, as discussed below. Each year, the total
costincludes the following elements:

I Capital Costsncurred forinvestinginto and/ordismantlingprocesses

I Fixed and variable annu@peration and Maintenance (O&M) Cos#sd other
annualcosts occurring during the dismantling of technolagies

I Costs incurred foexogenous impor@nd for domestic resouretractionand
production An exogenous import is one that imported from a-specified
entity, i.e. not from another modeled regionoB&nous imports amot relevant
in global TIMES instances

I Revenues from exogenoagport An exogenous export is one that is exported to
a nonspecified entity, i.e. not to another modeled region. Exogenous exports are
irrelevantin global TIMES instance Exogenous export earnings aggenus
and appear with a negative sign in the cost expressions

I Deliverycosts for commodities consumedthg processeslhese costs are
attached to commodity flows

I Taxesandsubsidis associated with commodity flows and process activities or
investmentsA tax is not a cogter se However, since the tax is intended to
influence the optimization, it is considered as an integral part of the objective
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function. It is however reported sajately from regular costs. Similarly for
subsidies.

I Revenues from recuperation of embedded commoditiesjed when a processOs
dismantling releases some valuable commodities

I Damage costéf defined) due to emissions of certain pollutants. Several
assumptionsare madethe damage costs in regionesult from emissions inand
possibly in other regionstamage cost is imputed to the emitting region (polluter
pays);emissions in periotlentail damages in periddnly; the damage cost from
several typs of emission is assumed to be the sum of the costs from each
emission type (no crossfect); and the damage function linking cBgtM to
emission€EM is a power function of the form:
Em’*L

(/ +)"EM,
Where ! is nonnegative (i.e. marginal damagest®are non decreasing). Hence,
the damage cost function is linear (I=0)rayn linearbut convex (! >0).
Therefore, the same linearization procedure that was used for the surplus may be
applied here in order to linearize the damage’tasppendix B ofPat Il and
Technical note "TIMES Damagegxplain how to declare the various parameters
required to define the damage functiciasspecifythe linearization parameters,
and todefine the switches used to contrat tptimization. It should be noted that
global emissions such as GHG's should not be treated via this feature but rather
should make use of the Climate Module option describetapter 7

I Salvage valuef processes and embedded commodities at the éhd pfanning
horizon This revenue appears with a negatsign in the cost expressions. It
should also be stressed that the calculation of the salvage value at the end of the
planning horizon is very complex and that the original TIMES expressions
accouning for it contained some biases (over underestimations of the salvage
values in some cases). These biases have been corrected in the present version of
TIMES as explained in sectiarb.3.4 and.5.

I Welfare lossesulting from reduced engse demand€hapterdhas presenteithe
mathematical derivation of this quantity.

DAM(EM)=MC,"

29 Alternatively, one may use a convex programming code to solve the entire TIMES LP.
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5.3.2 Cash flow tracking

As already mentioned, in TIMES, special care is taken to precisely trackghigbows
related to process investments and dismantling in each year of the horizon. Such tracking
is made complex by several factors:

I First, TIMES recognizes that there may be a-@ae (ILED) between the
beginning and the end of the construction of edange processes, thus spreading
the investment installments over several yeanecent TIMES feature allows the
definition of a negative leatime, with the meaning that the construction of the
technology starts before the year the investment dedsimadg(this is useful
for properly accouing for interest during construction, and is especially needed
when using the timstepped version of TIMES described in chaptgr

I Second, TIMES also recognizes that for some other processes (e.g. newears), th
investment in new capacity ocsyprogressivey overtheyearsconstituting the
time period(whose length is denoted by D(tiather than in one luneplamount

I Third, there is the possibility that a certain investment decision made at period
will haveto be repeated more than once during that same pé€rFiad will occur
if the period is long compared to the proctsshnicallife.)

I Fourth, TIMES recognizes that there may be dismantling capital costs at the end
of-life of some processes (e.g. a nuclglant), andhatthese costs, while
attached to the investment variable indexed by periace actually incurred
much later

I Finally, TIMES permitsthe payment of any capital castbespread over an
economic lifdELIFE) thatis different from theechnical life(TLIFE) of the
processFurthermordat may beannualized at a different rate than the overall
discount rate.

To illustrate the above complexities, we present a diagram taken from Part 1l that pictures
the yearly inveshents and yearly owtys of capital in one particular instance where there

is no lead time and no dismantling of the technol@yg the technical life of the

technology does not exceed the period lengfiere are 4 distinct such instances

discussed imletail insection6.2 of Part Il
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Investment r
Case 1.a Example: - and paymen
D(t)=4, TLIFE=5,ELIFE=3

Payment:

oy

M(t)=B(t)+1

7

BN M(@®

Figure 5.2 lllustration of yearly investments and payments for one of four investment
tracking cases

5.3.3 Aggregating the wgous costs

Theabove considerationgvhile adding precision and realism to the cost profile, also
introduce complexnathematical expressiongarthe objective function. In this

simplified formulation, we do not provide much detail on these complex expressions,
which are fully described isection 6.2f Part 1. We limit our description to giving
general indications otine cost elements comping the objective function, as follows:

I Thecapital costsigvestment and dismantliphgrefirst transformed into streams
of annual payments, computed for each year of the horizon (and beyond, in the
case of dismantlingosts ad recycling revenues), alottige linespresented
above

I A salvage valuef all investments still active at the end of the horizon (EOH) is
calculatedas a lump sum revenue whiclsigbtracted from the other costs and
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assumed to be accruedtire (single) gar following the EOHut is then
discounted to the user selected reference year

I The other costs listed above, which are all annual costs, are added to the
annualized capital cost payments, to formANNCOSTquantity below

TIMES then computes for eacbgion a total net present value of the stream of annual
costs, discounted to a user selected reference year. These regional discounted costs are
then aggregated into a single total cost, which constitutes the objective function to be
minimized by the moel in its equilibrium computation.

R
NPV = | @+ dr,y)REFYR‘V¥ANNCOS'(r,y)
r=1 y'YEARS
where:
NPV is the net present value of the total cost for all regionsI{tk&S

objective function);
ANNCOST(r,y) is the total annual cost in regiomnd yeay;,

dry is the general discount rate;
REFYR is the reference year for discounting;
YEARS is the set of years for which there are costs, including all years in

the horizon, plus past years (before the initial period) if costs have
been defined for past investmenikjs a number of years after
EOH where some investment and dismantling costs are still being
incurred, as well as the Salvage Valaeg

R is the set of regions in the area of study

As already mentioned, the exact computatioARNNCOSTis quite complexand is
postponed untisection 6.2f PART Il

5.3.4 Variants for the objective function

There are some cases where the standard formulation described abovedesdks to
distortions in the cost accounting between capaeigted costs and the corresponding
activity-related costs. This occurs even without discourttugmay be increased by

% The salvage value is thus the only cost element that remains lumped in the TIMES objective function. All
other costs are annualized.
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discounting These distortionsiayoccur at the end of the model horizon, either due to
excessive or deficient salvage value.

In addition to these cost accounting prokdeshthe end of horizon, the investment

spreads used in the standard formulation can also lead to other cost distortions, regardless
of discounting. h very long periods, the invesént spreads are divided int¢ D

succesiwe steps, each amounting t®16f the total capacity to be invested in the period.
Recall that the full capacity must be in place by the milestone year, in order to allow
activity to be constant over the perié@r example, if the period length 3 20 years,

the investments startrabdy 19 years before the milestone year, and can thus\sart

before the previous milestone yekithe investment costs are changing over time, it is

clear that in such cases the costs will not be accounted ialistie way, because the
investnentcost data is taken from the start year of each investment step.

Similarly, in short periods the investment costs are spread over only a few years, and if
the previous period is much longer, this can leave a considerable gap in the investment
years betweenuccessive pards. Here again, if the inveséent costs are changing over
time, this would lead to a distortion in the cost accounting.

Unfortunately, it is a welknown fact that the originahoice of defining milestone years

at or near the middle okeh period limits the choice of milestone years, and furthermore
tends to induce periedhat may be very unequal in lengthus exacerbating the
anomalies mentioned above. Such variability in period length can increase the cost
distortions under dismrting due to the larger diffences in the timing of the available
capacity (as defied by the investents) and the assumed constant activity levels in each
period in the original definitionf TIMES variables

These were remedied by making changes irspdrtheOBJ cost representation. Four
options are now available, three of which apply to the original definition of TIMES
variables, the fourth one applying to the alternate definition of TIMES variables. The
fourth option(namedLIN ) is discussed sepaedy in sectiorb.5, since it concerns not
only the objective function but also several constraints.

The three options are as follows:

¥ The original OBJ with minor changes made to it, activated vioBleONG
switch
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¥ The modified objective functiodMOD). TheMOD formulation adds only a few
modifications to the standard formulation:
¥ The model periods are defined in a different way; and
¥ The investment spreads in the investment Cases la gsdebection 6.2
of Part Il fora list of all cases) are defidelightly differently.

¥ TheALT formulation includes all the modifications made in the MOD
formulation. In addition, it includes the following further modifications that
eliminate basically all of the remaining problems in the standard formulation:
¥ The investment spreads in the investment Case 1b are defined slightly
differently;
¥ The capacity transfer coefficients for newly installed capacities are
defined slightly differently, so that the effective lifetime of technologies is
calculated taking into accoudiscounting;
¥ Variable costs are adjusted to be in sync with the available capacity.

It has been observed that these three options yield results that have practically the same
degree of accuracy and reliability. There is however an advantage to thendOL T
optiors, as the milestone years need no longer be at the middle of a period.

Additional details and comments are provided on all three options in technical note
"TIMES ObjectiveVariants"

Conclusion on the variant$he multiplicity of options magonfuse the modeler.
Extensive experience with their use has shown that thetths®discussed above
remain quite small. In practice, old TIMES usseem to stick to the classical OBJ with
the OBLONG switch. And, as mentioned above, using MOD altbe further flexibility
of freely choosing milestone years. Finally, using the LIN opfi@scribed in section
5.5)is a more serioudecision since it implies a different meaning for the TIMES
variables;some modelers are more comfortable with this @&yoamhich has also
implications for the reporting of results.

5.4 Constraints

While minimizing total discounted cqshe TIMES model must satisfy a large number of
constraints (the soalledequationsof the model) which express the physical and logical
relationships that must be satisfied in order to properly depict the associated energy
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system. TIMES constraints are of several kirttire we list and briefly discuss the main
types of constraints. A fylmathematically more precisescription is given ifart II. If
any constraint is not satisfied, the model is said tmteasible a condition caused by a
data error or an ovapecification of some requirement.

In the descriptions of the equations that follow, the equation and variable names (and
theirindexes) are ibold italic type, and the parameters (and their indexes),
corresponding to the input data, are in regitiédic typeset. Furthermore, some
parameter indexes have been omitted in order to provide a streamlined presentation.

5.4.1 Capacity tansfer (conservation of investments)

Investing in a particular technology increases its installed capacity for the duration of the
physical life of the technology. At the end of that life, the total capacity for this
technology is decreased by the samm@ant. When computing the available capacity in
some time period, the model takes into account the capacity resulting from all
investments up to that period, some of which may have been made prior to the initial
period but are still in operating conditigembodied by the residual capacity of the
technology), and others that have been decided by the model at, or after, the initial
period, up to and including the period in question.

The total available capacity for each technolpg regionr, in periodt (all vintages),is
equal to the sum of investments made by the miadedst and current periods, and

whose physical life has not yet ended, plus capacity in place prior to the modeling
horizon that is still available. The exact formulation of this qairstis made quite

complex by the fact that TIMES accepts variable time periods, and therefore the end of
life of an investment may well fall in the middle of a future time period. We ignore here
these complexities and provide a streamlined version ®tdnstraint. Full details are
shown insection 6.3.18&f Partll.

EQ_CPT(r,t,p)- Capacity transfer
VAR_CAPT(r,t,p)= Sum{over all periods tO preceding or equal to t such
that

t-tO<LIFE(r,tO,p) MAR_NCAP(r,t0,g) + RESID(r,t,p)
(5-1)
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whereRESID(r,t,p)is the (exogenously provided) capacity of technology
p due to investments that were made prior to the initial model period and
still exist in regiorr at timet.

5.4.2 Definition of process activity variables

Since TIMES recognizes activity vabias as well as flow variables, it is necessary to
relate these two types of variables. This is done by introducing a constraint that equates
an overall activity variableyAR_ACT(r,v,t,p,s) with the appropriate set of flow
variablesVAR_FLO(r,v,t,p,c,s) properly weighted. This is accomplished by first
identifying the group of commodities that defines the activity (and thereby the capacity as
well) of the process. In a simple process, one consuming a single commodity and
producing a single commodity, theodeler simply chooses one of these two flows to
define the activity, and thereby the process normalization (input or output). In more
complex processes, with several commodities (perhaps of different types) as inputs
and/or outputs, the definition of tlaetivity variable requires first to choose framary
commodity group (pcghat will serve as the activigiefining group. For instance, the
pcgmay be the group of energy carriers, or the group of materials of a given type, or the
group of GHG emissi®) etc. The modeler then identifies whether the activity is defined
via inputs or via outputs that belong to the seleptag Conceptually, this leads to the
following relationship:

EQ_ACTFLO(r,v,t,p,s)PActivity definition

VAR_ACT(r,v,t,p,sF SUM{c in pcg ofVAR_FLO(r,v,t,p,c,s) /ACTFLO(r,v p,c}
(5-2)
whereACTFLO(r,v,p,c)s a conversion factor (often equal to 1) from the activity
of the process to the flow of a particular commaodity.

5.4.3 Use of capacity

In each time period the model may use some or all of the installed capacity according to
the Availability Factor (AF) of that technology. Note that the model may decide to use
lessthan the available capacity during certain tigtiees, or even throughout @er more
whole periods, if such a decision contributes to minimizing the overall cost. Optionally,
there is a provision for the modelerftwce specific technologies to use their capacity to
their full potential.
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For each technology, periodt, vintage v, regionr, and timeslices, the activity of the
technology may not exceed its available capacity, as specified by a user defined
availability factor.

EQ_CAPACT (r,v,t,p,s) Use of capacity

VAR_ACT (r,v,t,p,Sy or =
AF(r,v,t,p,s)* PRC_CAPACT(NPFR(r,s)*VAR_CAP(r,v,t,p)
(5-3)

HerePRC_CAPACT(r,pis the conversion factor between units of capacity and activity
(often equal to 1, except for power plants). Hr{r,sparameter is equal to the

(fractional) duration of timelice s. The availability factdkF also serves to indicate the
nature of the constraint as an inequality or an equality. In the latter case the capacity is
forced to be fully utilized. Note that tl@AP(r,v,t,p)variable” is not explicitly defined in
TIMES. Instead it is replaced in-@ by a fraction (less than or equal to 1) of the
investment variabl® AR_NCAP(r,v,p}* sum of past investments that are still operating,
as in equation 3).

Example: a coal fired power plantOs activity in any tisliee is bounded above by 80%
of its capacity, i.eVAR_ACT (r,v,t,p,s) ! 0.8*31.536* CAP(r,v,t,p),where
PRC_CAPACTr,p) = 31.536 is the conversion factor between the units of the capacity
variable (GW)and the activitybased capacity unit (PJ/a) The activitgsed capacity

unit is obtained from the activity unit(PJ) by division by a denominator of one year.

Thesindex of theAF coefficient in equation (3) indicates that the user may specify
time-sliced dependency on the availability of the installed capacity of some technologies,
if desirable. This is especially needed when the operation of the equipment depends on
the availability of a resource that cannot be stored, such as wind and sun, an thet ca

only partially stored, such as water in a reservoir. In other cases, the user may provide an
AF factor that does not depend gwhich is then applied to the entire year. The

operation profile of a technology within a year, if the technology has-arsulmal

process resolution, is determined by the optimization routine. The number of
EQ_CAPACTconstraints is at least equal to thenber of timeslices in which the

31 That fraction is equal to 1 if titechnical life of the investment made in perioftilly covers period. It
is less than 1 (perhaps 0) otherwise.
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equipment operates. For technologies with only an annual characterization the number of
constraints is reduced to one per period (Wse@ANNUALD

5.4.4 Commodity balancegeiation

In each time period, the production byegion plus imports from other regions of each
commodity must balance the amount consumed in the region or exported to other regions.
In TIMES, the sense of each balance constraimtrE) is user controlled, via a special
parameter attached to each condityo However, the constraint defaults to an equality in

the case of materials (i.e. the quantity produced and imporéxadslyequal to that

consumed and exported), and to an inequality in the case of energy carriers, emissions
and demands (thus allong some surplus production). For those commaodities for which
time-slices have been defined, the balance constraint must be satisfied in eaglicéme

The balance constraint is very complex, due to the many terms involving production or
consumption oA commodity. We present a much simplified version below, to simply
indicate the basic meaning of this equation.

For each commodity, time periodt (vintagev), regionr, and timeslices (if necessary

or OANNUALO if not), this constraint requires thatdrsposition of each commodity
balances its procurement. The disposition includes consumption in the region plus

exports; the procurement includes production in the region plus imports.

EQ_COMBAL(r,t,c,s) Commodity alance
[ Sum{over allp,c ” TOP(r,p,c,00utO )ofVAR_FLO(r,v,t,p,c,s) +
VAR_SOUT(r,v,t,p,c,s)TG_EFF(r,v,p)} +

Sumf{over all p,c * RPC_IRE(r,p,c,0imp@j
:'VAR_IRE(r,t,p,c,s,0imp®)

Sum{over all p of: Releasa(t,p,c)*VAR_NCAP(rt,p,c}] *
COM_IE(r,t,c,s)

# or = (5-4)
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Sumf{over allp,c” TOP(r,p,c,0in®)f: VAR_FLO(r,v,t,p,c,s) +
VAR_SIN(r,v,t,p,c,s) +

Sum pver allp,c” RPC_IRE(r,p,c,0expOdf:
VAR_IRE(r t,p,c,s,0exp0) +

Sumf{over all p of: Sink¢,t,p,c)*VAR_NCAP(r,t,p,c)} +
FR(c,s) VAR _DEM(c,t)

where:

The constraint id for energy forms and = for materials and emissions
(unless these defaults are overridden by the user, see Part Il).

TOP(r,p,c,Oin/outMYentifies that there is an input/output flow of
commodity ¢ into/from procegsin regionr;

RPC IRE(r,p,c,Oimp/exp) identifies that there is an import/export flow
into/from regionr of commaodityc via proces®;

STG_EFF(r,v,p) is the efficiency of storage process p;

COM_IE(r,t,c) is the infrastructure efficiency of commodity c;

Release(r,t,p,ds the amount of commodityrecuperated per unit of
capacity of procegsdismantled (useful to represent some materials or
fuels that are recuperated while dismantling a facility);

Sink(r,t,p,c)is the quantity of commodity required per unit of new
capady of proces$ (useful to represent some materials or fuels
consumed for the construction of a facility);

FR(s)is the fraction of the year covered by thsiece s (equal to 1 for
non time-sliced commaodities)

Example Gasoline consumed by vehicfdas gasoline exported to other regions must
not exceed gasoline produced from refineries plus gasoline imported from other regions.

5.4.5 Defining flow relationships in a process

A process with one or more (perhaps heterogeneous) commodity flows is egsentiall
defined by one or more input and output flow variables. In the absence of relationships
between these flows, the process would be completely undetermined, i.e. its outputs
would be independent from its inputs. We therefore need one or more constaimgs st

in a most general case that the ratio of the sum of some of its output flows to the sum of
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some of its input flows is equal to a constant. In the case of a single commodity in, and a
single commodity out of a process, this equation definedt@onal efficiency of the
process. With several commodities, this constraint may leave some freedom to individual
output (or input) flows, as long as their sum is in fixed proportion to the sum of input (or
output) flows. An important rule for this constriais thateach sum must be taken over
commodities of the same tyfpe. in the same group, say: energy carriers, or emissions,
etc.). In TIMES, for each process the modeler identifies the input commodity ggbup

and the output commodity grogpg?2, andchooses a value for the efficiency ratio, named
FLO_FUNC(p,cgl,cg2)The following equation embodies this:

EQ_PTRANS(r,v,t,p,cgl,cg2,&Efficiency definition
SUM{c in cg2 of VAR_FLO(r,v,t,p,C,S }=

FLO_FUNC(r,v,cg1,cg2,s) SUM{c within cg1 of:
COEFF(r,v,p,cgl,c,cg2,sYAR_FLO(r,v,t,p,c,s} (5-5)

whereCOEFF(r,v,p,cgl,c,cg2,9akes into account the harmonizatiorddferent
time-slice resolution of the flow variables, which have been omitted here for
simplicity, as well as commodHigtependent transformation efficiencies.

5.4.6 Limiting flow shares in flexible processes

When either of the commodity growqud orcg2 contins more than one element, the
previous constraint allows a lot of freedom on the values of flows. The process is
therefore quite flexible. The flow share constraint is intended to limit the flexibility, by
constraining the share of each flow within itgrogroup. For instance, a refinery output
might consist of three refined produatd=light, c2=medium, ana3=heavy distillate. If
losses are 9% of the input, then the user must spgelc®y FUNC= 0.91 to define the
overall efficiency. The user may themmmt to limit the flexibility of the slate of outputs
by means of threELO_SHAR(ci) coefficients, say 0.4, 0.5, @e8ulting in three flow
share constraints as follows (ignoring some indices for clarity):

VAR_FLO(c1)Y 0.4*[VAR_FLO(c1) + VAR_FLO(c2) ¥YAR_FLO(c3)]so thaicl
is at most 40% of the total output,

VAR_FLO(c2) 0.5*[VAR_FLO(c1) + VAR_FLO(c2) + VAR_FLO(c3}p thatc2
is at most 50% of the total output,
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VAR_FLO(c3) 0.6*[VAR_FLO(c1) + VAR_FLO(c2) + VAR_FLO(c3}o thatc3
is at most 6@ of the total output,

The general form of this constraint is:
EQ_INSHR(c,cg,p,r.t,9ndEQ_OUTSHR(c,cg,p,r.t,S)

VAR_FLO(c)! #, =
FLO_SHAR(c) * Sum {over all cO in cg\6&R_FLO(cO} (5-6)

The commodity groupg may be on the input or output sidkthe process.

A recent modification of TIMES simplifies the above constraints by allowing the use of
theVAR_ACTvariable instead of the sum ¥AR_FLO variables in equation {6) or in
similar ones. This simplification is triggered when the user defines the new attribute
ACT_FLO, which is a coefficient linking a flow to the activity of a process. Furthermore,
commodityc appearing in lefhandside of tle constraint may even be a flow that is not
part of thecg group.

Warning It is quite possible (and regrettable) to over specify flow related equations such
as (56), especially when the constraint is an equality. Such an over specification leads to
an nfeasible LP. A new feature of TIMES consists in deleting some of the flow
constraints in order to festablish feasibility, in which case a warning message is issued.

5.4.7 Peaking reserveonistraint (timesliced commodities only)

This constraint imposes thide total capacity of all processes producing a commodity at
each time period and in each region must exceed the average demand in-tieg¢ime
where peaking occurs by a certain percentage. This percentage is the Peak Reserve
Factor,COM_PKRSt,c,s) and is chosen to insure against several contingencies, such
as: possible commodity shortfall due to uncertainty regarding its supply (e.g. water
availability in a reservoir); unplanned equipment down time; and random peak demand
that exceeds the averagentand during the timslice when the peak occurs. This
constraint is therefore akin to a safety margin to protect against random events not
explicitly represented in the model. In a typical cold country the peakingstiogefor
electricity (or natural gg will be WinterDay, and the total electric plant generating
capacity (or gas supply plant) must exceed the Wibssgr demand load by a certain
percentage. In a warm country the peaking giee may be Summdday for electricity
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(due to heavy air coniitbning demand). The user keeps full control regarding which
time-slices have a peaking equation.

For each time periodand for regiorr, there must be enough installed capacity to exceed
the required capacity in the season with largest demand for adityrady a safety
factorE called thepeak reserve factor

EQ_PEAK(r,t,c,s)} Commodity peak requirement

Sumf{over all p producingc with c=pcgof PRC_CAPACTr,p) * Peak(r,v,p,c,s)
* FR(s)*VAR_CAP(r,v,t,p) * VAR_ACTFLO(r,v,p,c} +

Sumf{over all p producingc with c# pcgof
NCAP_PKCNTr,v,p,c,s)*VAR_FLO(r,v,t,p,c,3} + VAR_IRE(r,t,p,c,si)

# (5-7)

[1+ COM_PKRSW,t,c,s)]* [ Sum{over all p consuming oof
VAR_FLO(r,v,t,p,c,s) ¥AR_IRE(r,t,p,c,s,€) ]

where:

COM_PKRSV(r,t,c,dk the regiorspecific reserve coefficient for
commodityc in time-slice s, which allows for unexpected down time
of equipment, for demand at peak, and for uncertain resource
availability, and

NCAP_PKCNTr,v,p,c,s)specifies the fraction of technolog{s capacity
in a regiornr for a period and commodityc (electricity or heat only)
that is allowed to contribute to the peak load in sjamany types of
supply processes are predictably available during the peak and thus
have a peak coefficient equal 1, whereas others (such as wind
turbines or solar plants in the case of electricity) are attributed a peak
coefficient less than 1, since they are on average only fractionally
available at peak (e.g., a wind turbine typically has a peak coefficient
of .25 or .3, whereas a hydroelectric plant, a gas plant, or a nuclear
plant typically has a peak coefficient equal to 1).
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For simplicity it has been assumed ir/Bthat the timeslice resolution of the
peaking commodity and the tingéice resolution of theommodity flows (FLO,
TRADE) are the same. In practice, this is not the case and additional conversion
factors or summation operations are necessary to match differerdliceéevels.

Remark to establish the peak capacity, two cases must be distieguis
constrainEQ_PEAK

BFor production processes where the peaking commodity is the only commodity
in the primary commodity group (denoted c=pcg), the capacity of the process may
be assumed to contribute to the peak.

DFor processes where thegeng commodity is not the only member of the
pcg, there are several commodities included in the pcg. Therefore, the capacity as
such cannot be used in the equation. In this case, the actual production is taken
into account in the contribution to the pemistead of the capacity. For example,
in the case of CHP only the production of electricity contributes to the peak
electricity supply, not the entire capacity of the plant, because the activity of the
process consists of both electricity and heat geioerat either fixed or flexible
proportions, and, depending on the modeler's choice, the capacity may represent
either the electric power of the turbine in condensing or-paegsure mode, or
the sum of power and heat capacities in bar@dssure mode. Theis therefore a
slight inconsistency between these two cases, since in the first case, a technology
may contribute to the peak requirement without producing any energy, whereas
this is impossible in the second case.

Note also that in the peak equati®n7(), it is assumed that imports of the commodity are
contributing to the peak of the importing region (thus, exports are implicitly considered to
be of thefirm powertype).

5.4.8 Constraints on commodities

In TIMES variables are optionally attached to vas@uantities related to commaodities,
such as total quantity produced. Therefore it is quite easy to put constraints on these
quantities, by simply bounding the commaodity varialibesach period. It is also possible
to impose cumulative bounds on commiggitover more than one period, a particularly
useful feature for cumulatively bounding emissions or modeling reserves of fossil fuels.
By introducingsuitablenaming conventions for emissions the user may constrain
emissions from specific sectors. Furthere, the user may also impose global emission
constraints that apply to several regions taken together, by allowing emissions to be
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traded across regions. Alternatively or concurrently a tax or penalty may be applied to
each produced (or consumed) unieafommodity (energy form, emission), via specific
parameters.

A specific type of constraint ag be defined to limit the share of process (p) in the total
production of commodity (c). The constraint indicates that the flow of commodity (c)
from/to procesgp) is bounded by a given fraction of the total production of commodity
(c). Inthe present implementation, the same given fraction is applied to adlites

5.4.9 User onstraints

In addition to the standard TIMES constraints discussed above, theaysereate a

wide variety of secalled User Constraints (UC's), whose coefficients follow certain rules.
Thanks to recent enhancements of the TIMES code, user defined constraints may involve
virtually any TIMES variableFor example, there mayuserdefined constraint limiting
investment in new nuclear capacity (regardless of the type of reactor), or dictating that a
certain percentage of new electricity generation capacity must be poweagzblyolio

of renewable energy sources. User constsainay be employed across time periods, for
exampleto model options for retrofittingxisting processes or extending their technical
lives. A frequent use of UC's involgeumulative quantities (over time) of commodities,
flows, or process capacities activities. RecentIMES codechanges make the

definition of the righthandsides of such UC's fairly independent of the horizon chosen

for the scenario, and thus make it unnecessary to redefine the RHS's when the horizon is
changed.

In order to facilitag¢ the creation of a new user constraltMES provides daemplatefor
indicating a) the set of variables involved in the constraint, and b) thelefseed
coefficients needed in the constraint.

The details of how to build different typesWd€ are intuded insection 6.4f Part Il of
the documentatian

5.4.10 Growth constraints

These are special cases of UC's that are frequently used to maintain the growth (or the
decay) of the capacity of a process within certain bounds, thus avoiding excessive abrupt
investment in new capacity. Such bounding of the growth is often justified by the reality
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of real life constraints on technological adoption and evolution. The user is however
advised to exert caution on the choice of the maximum rates of technological,change
risk being to restrict it too much and thus "railroad" the model.

Typically, a growth constraint is of the following generic form (ignoring several indices
for clarity:

N L O O O A O T N I L I B (<))

The GROWTH coefficient is defined as a new attribute of the technology, and represents
the maximum annual growth allowed for the capacity. The quantity M{)is the

number of years between the milestones of periods t and t+1. The téhsarseful
whenever the technology has no capacity initially, in order to allow capacity to build over
time (if K were absent and initial capacity is zero, the technology would never acquire
any capacity)

Note that the sign of the constraint may aleawbthe "larger than or equal to" type to
express a maximum rate of abandonment, in which case the "+" sign is replacég by a "
sign in the righthandside of the constraint. Equality is also allowed, but must be used
only exceptionally in order to avordilroading of the model.

5.4.11 Early retirement of capacity

With this new TIMES feature the user may allow the model to retire some technologies
before the end of their technical lives. The retirement may be continuous or discrete. In
the former case, the rdel may retire any amount of the remaining capacity (if any) at
each period. In the latter case, the retirement may be effected by the model either in a
single block (i.e. the remaining capacity is completely retired) or in multiples of a user
chosen blockPlease refer to chapt®d of this documenThe lumpy investment option

for additional discussion of the mathematical formulation of MIP problems.

This feature requires the definition of three new constraints, as listed and briefly
describedn table5.1 as well as the alteration of many existing constraints and the
objective function, as described in tabl2 Part Il and the special separate nDIES
Early Retirement of Capacifyrovide additional detail.

The user is advised to use the discrete early retirement feature sparingly, as it implies the
use of mixed integer programming optimizer, rather than the computationally much more
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efficient linear programming optimizer. The user should also be awaresthgtthe
discrete option voids some of the economic properties of the equilibrium, as discussed in
section10.3.

New Equation Description
EQ_DSCRET(r,v,t,p) Discrete retirement equation for procesasnd vintagey in
regionr and period.
Plays aranalogous role to equation EQ_DSCNCAP in tk
Discrete Capacity Investment Extension.
EQ_CUMRET(r,v,t,p) Cumulative retirement equation for procesasnd vintages
in regionr and period.
EQL_SCARTt.t,p,ips) Maximum salvage capacity constraint fopcesg in
regionr and period, defined forips = N (unless
NCAP_OLIFE is specified).
Table5.1.The new constraints required to implement early retirement of capacity
Existing Equation | Equation Description Purpose of Modification
EQ_OBJFIX Fixedcost component of To credit back the fixed costs of the
objective function capacity that is retired early
EQ_OBJVAR Variable cost component of | To reflect the effect of capacity that is
objective function retired early in the costs of capaeiglated
flows
EQ_OBJSALV Salvage cost component of | To subtract the salvage value (if any) of
objective function capacity that is retired early
EQ()_CPT Capacity transfer equation | To reflect the effect of capacity that is
forl=L,E, G retired early
EQ()_CAPACT Capacity utilization equation| To reflect the effect of capacity that is
forl=L,E, G retired early
EQ()_CAFLAC Commodity based availability To reflect the effect of capacity that is
forl=L,E constraint retired early
EQ()_COMBAL | Commodity balance equatior To reflect the effect of capacity that is
forl=G, E retired early in capacityelated flows
EQ_PEAK Commodity peaking To subtract the peak contribution of
constraint capacity that is retired early
EQ()_UC* The FLOcomponent of all To reflect the effect of capacity that is
forl=L,E, G user constraints retired early in capacityelated flows
EQ()_MRKCON | Market share of flow in the | To reflect the effect of capacity that is
forl=L,E, G consumption of a commodityl retired earlyin capacityrelated flows
EQ(I)_MRKPRD | Market share of flow in the | To reflect the effect of capacity that is
forl=L,E, G production of a commodity | retired early in capacityelated flows

Table5.2. List of existing constraints that are affectedtwy early retirement option.
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5.4.12 Electricity gid modeling

The electricity sector plays a central role in any energy model, and particularly so in
TIMES. The electricity commodity has features that present particular challenges for its
representation, in thétis difficult to store, and requires a network infrastructure to be
transported and delivered. The considerable development of new renewable electricity
generation technologies adds to the complexity, inasmuch as the technical requirements
of integratirg interruptible generation facilities (such as wind turbines and solar plants) to
a set of traditional plants, must be satisfied for the integration to be feasible. Such
considerations become even more relevant in large regions or countries, where the
distances between potential generation areas and consumption areas are quite large.

Such considerations have led to the introduction of an optional grid modeling feature into
the TIMES model's equations. A grid consists in a network of nodes linked biparcs
branches). Each node may represent a-@eflhed geographic area that is deemed

distinct from other areas of the region, either because of its generation potential (e.g. a
windy area suitable for wind farms) and/or because of a concentration ofgfoints
consumption of electricity (e.g. a populated area separated from other populated areas or
from generation areas.)

The purpose of this section is to indicate the broad principles and characteristics of the
grid representation feature in TIMES. The mledevishing to implement the feature is
urged to read to the detailed Technical NOBEIMES Grid modeling featureghich

contains the complete mathematical derivations of the equations, and their
implementation in TIMES. What follows is a much streamlimexsion outlining only

the main approach and ignoring the many details of the mathematical equations.

5.4.12.1A much simplified sketch of the grid constraints
The traditional way to represent the nodes and arcs of a grid is shown irbfigusbere

each nodés shown as a horizontal segment, and the nodes are connected via bi
directional arcs.
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Figure 5.3.Connection of a grid node with other nodes

The basic energy conservation equation of a grid is as follows:

M

Gi n Li - ! F)I’J
=1 for each i=1,2,....M

where:

M = the number of nodes connected with nbde

Gi = active power injected into noddy generators

L; = active power withdrawn from noddy consumer loads
P;j = branch flow from nodeto nodej

As mentioned above, these constimare then radified so as to include important
technical requirements on the electrical properties (reactance and phase angle) of each
line. Suffice it to say here that the resulting new equations remain linear in the flow and
other variables.

5.4.12.2Integrating grid equabns into TIMES

It should be clear that the variabl&sandL; must be tightly related to the rest of the
TIMES variables that concern the electricity commodities. In fact, the modeler must first
decide on an allocation of the set of generation technologieblistdsets, each subset
being attached to a node of thedg Similarly, the set of all technologies that consume
electricity must also be partitioned iftbsubsets, each attached to a node. These two
partitions are effected via new paramesgscifying the fractions of each generation type
to be allocated teach grid node, and similarly for the fractions of each technology
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consuming electricity to be allocated to grid each node. This indeed amounts to a partial
regionalization of the model concerning the electricity sector. Thus, var(ajdesiL;
are deined in relation to the existing TIMES variables.

Of course, the introduction of the grid requires modifying the electricity balance

equations and peak equations, via the introduction of the net total flow variables the set of
grid nodes. The electricityalance equations are modified for each time slice defined for
electricity.

Finally, additional a security constraint is added in the case of amgitinal model,
expressing that the total net export or import of electricity from regdwes not exced
a certain (usedefined) fraction of the capacity of the portion of the gné&ihg regionr
to other regios.

5.4.12.3Costs

New costs attached to the grid are also modeled, and form a new component of the
objective function for the region. For this, a nesst coefficient is defined and attached
to each node of the grid. TIMES multiplies this cost coefficient by the proper new grid
variables and discounts the expression in order to form the new OBJ component.

5.4.13 Reporting "constraints”

These are not constraints proper but expressions representing certain quantitiésruseful
reporting,after the run isompleted They have no impact on the optimizatidvie have
already mentione@AP(r,v,t,p) which represents the capacity of a procgsgititage.

One sophisticated expressi@porsthelevelized cosfLC) of a process. A process'C

is a life cycle quantity that aggregates all costs attached to a process, whether explicit or
implicit. It is a useful quantity for ranking processes. However, such a ranking is

dependent upon a particular model run, and may vary from run to ruris Boibecause

several implicit costs attached to a process such as the cost of fuels used or produced, and
perhaps the cost of emissions, are run dependent.

The general expression for the levelized cost of a process is as follows:
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" jc,  OG+VG+| FC,+FD, +| ED, | BD,

| —+ _ _
LEC = ;:1 (1+ r)t 1 (1+ r)t 0.5 (1+ r)t 0.5
"1 WMo,
o (L+1)"0° (5-9)
where

¥ r = discount rate (e.g. 5%)

¥ IC; = investment expenditure in (the beginning of) ytear
¥ OG = fixed operating expenditure in ydar
¥ VG = variable operating expenditure in year
¥ FCi = fuelspecific operating expenditure for fueh yeart
¥ FDj = fuelspecific acquisition expenditure for fueh yeart
¥ ED; = emissionspecific allowance expenditure for emissjon yeart (optional)
¥ BDy = revenues from commodityproduced by the process in yeégoptional;)
¥ MOy = output of main produenin yeart, i.e. a member of thecg
Comments:

Each cost element listed above is obtained by multiplying a unit cost by the value of the
corresponding variable indicated in the run results.

The unit values of the first four costs are simply equaptbeess input data, i.e. the unit
investment cost, the fixed unit O&M cost, the unit variable operating cost, and the unit
delivery cost. The last three costs are the shadow prices of the commodities concerned,
endogenously obtained as the dual solutioth® current model run.

Note also that the user may choose to ignore the last two costs or to include them.
Furthermore, concerning the last cost (which is indeed a revenue), the user may decide to
ignore the revenue from the main commodities prodbgettie process and retain only

the revenues from the products. The choice is specified via the parameter
RPT_OPT(ONCAPO,010). Technical note "LevelizeTIMESS provides details on the
parameter values.
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5.5 The'Linear' variant of TIMES

This alternate TIMES formulation (called the LIN variant) assumes a different meaning
for the activity and flow variables of TIMES. More precisely, instead of assuming that
flows and activities are constant in all years within the same period, the varianeassum
that the flow and activity variables apply to only one milestone year within each period.
The variables' values at other years of a period are interpolated between successive
milestone years' values. See secti@fér. a figure depicting the twalterrate

definitions

Choosing the LIN formulation affects thariable costs in thebjective function as well
as alldynamic constraints involving activities or flows. Note also that the LIN variant
avoids the cost distortions mentioned in secti@ls.

Significant modifications in the LIN formulatioconcernthe variable cost accounting

since the latter are no longer constant in all years of any given period, but evolve linearly
between successive milestone yedite objectivdunctioncomponents for alfariable

costs have been modifiedcordingly

The following further modifications are done in the LIN formulation:

¥ The cumulative constraints on commodity production (EQ(l)_CUMNET and
EQ(I)_CUMPRD) are modified to include linear interpolation of thencwdity
variables involved;

¥ The cumulative constraints on commodity and flow taxes and subsidies
(EQ(l)_CUMCST) are modified to include linear interpolation of the commodity and
flow variables involved,;

¥ The dynamic equations of the Climate module are nemtitb include linear
interpolation of the variables involved;

¥ The interperiod storage equations are modified to include linear interpolation of the
flow variables involved,;

¥ The cumulative user constraints for activities and flowsal@modifiedin a smilar
manner.

¥ Note thatin the LIN formulation the activity ahter-period storageequations is
measured at the milestone year (in the standard formulation it is measured at the end
of each period). In addition, new EQ_STGIPS equations are added te #raduhe
storage level remains naregative at the end of each periithout these
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additional constraints, the linear interpolation of storage could leadegative
storage level if the period contains more than a single)year
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6 Parametric analysis with TIMES

Dealing with uncertainty in modeling is a complex endeavour that may be accomplished
via a number ofsometimes widely differepapproachedn the case of TIMES, two

different featuresre availableStochastic Programmindtreated in chapter 8) and
parametric analysisalso known asensitivity analysiswhich is the subject of this

chapterlIn sensitivity analysis, the values of some important exogenous assumptions are
varied, and a series of model runs is performed over eetiksset of combinations of

these assumptions. Sensitivity analysis is often combinednadboff analysis where

the tradeoff relation between several objectives is analyzed.

The uncertain attributes are similar to the corresponding sthiitldiES attibutes, but

they maynow have different values according to the differstattesof-the-world

(SOW), just as in the case stbchastic pragamming The difference between the two
approaches is that sensitivity analysis solves a sequence of instancessesaing

different values of the uncertain parameters, whereas stochastic programming solves a
single instance that encompasses all potential values of the uncertain parameters
simultaneously

In TIMES, sensitivity analysis antladeoff analysis faciljtareimplemented using the
same setup and some of the attributes of the stochastic mode of TIMES, since both
approaches, although conceptually different, use the same state of the world construct.

Here area few possible saips for sensitivity and tradeoff analyses in TIMES, all of
which are supported by the model generator:

A. Single phasesensitivity analysis over the set of SOWs&ach run corresponds #oset
of values for the uncertain parameters. Thesrare mutually independeftiis is the
most straightforward approach;

B. Two-phase tradeoff analysis, where the model is first run using aleéeed
objective function, and thehe TIMES objective function issad in phase 2, while
the solution from thérst phase is used for defining additional constraints in a series
of model runs in the second phase

C. Multiphase tradeoff analysis over N phasehkich is a generalization of the two
phase case.
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Analyzing tradeoffs between the standard objective fun@rmd some other possible
objectives (for which the market is not able to give a pm@enot possible in an
effective waywith earlier versions of IMES.

6.1 Two-phase tradeoff analysis

In thefirst phaseof the TIMES twephase tradeoff analysis faciljtthe objective
functionis user defineds a weighted sum of any number of componeash

component being a user constraint's-hefhidside All UC's must be of the global type,
(i.e.aggregatedver regions and periods). Optionallgcé of the compant UG may
alsobe constrained by upper/lower bounds. The components are defined by fivauser
the specification ofonzero weight coefficients for the Usto be included in the
objective. The original objective function (total discounted costs)t@ratically pre
defined as a nenonstraining user constraint with the na@8d¥0, and can therefore
always be directly used as one of the component UCs, if desired.

Consequently, the first phase can be considered as representing a Utility Tradexff Mod
which can also be used as a stafahe optionlf used in a stardlone mannerti

constitutes a case of muttriterion decision makingsée e.g. Weistroffer, 20p5'he
resulting objective function to be minimized can be written as follows:

minobjl= | W(uc)¥LHS(uc)

uc' UC_GLB
where:
W(uc) = weight of objective componentin Phase 1
LHS(uc) = LHS expression of user constraiaccording to its definition
UC GLB = the set of all global UC constraints (includi@Bdz0)

In thesecond phasef the TIMES twephase tradeoff analysis facility the objective
function is always theriginal objective functionin TIMES, i.e. the total discounted
system costthis ensures that the second phase solution produce an economically
meaningful set of valigefor the dual variables.)

In addition, in the second phase the user can specify bouridsctanaldeviatiorsin
the LHS valus ofany or alluser constraiisf in compaison to the optimal LHS valge
obtained in the first phase. Such deviation bowaasbe set for both global and ron
global constraints, and for both roanstraning and constrained UCkdweverany
original absolute bounds are overridden by the deviation boundspbjéwtive function
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used in Phase is alsoavailable as an additial predefined UC, nameddBJ10, so that
one can set either deviation bounds or absolute bounds on that as well, if desired. In
addition, both the total and regional original objective funstaan be referred to by
using the préefined UC namedBJZOn the deviation bound parameters.

The objective function to be minimized in the second phase, and th®aaldbounds on
the LHS values of UCs, can be written as follows:

minobjz = LHS('OBJZ)
LHS(uc) &(1+ maxdeuc)) ¥LHS (uc) #  for eachucfor which
LHS(uc) %(1$ maxdeguc)) ¥ LHS" (uc) | maxdev(ud)asbeenspecifiec

where:
LHS(O0OBJZO) = the standard objective functi¢discounted total system costs)
LHS(uc) = LHS expression of user constrairtaccording to its definition
LHS*(uc) = optimal LHS value of user constraintin Phase 1
maxdev(uc) = userspecified fraction defining the mismum proportional
deviationin the value of LHS{c) compared to the solution in
Phase 1
Remarks:

1. Use of the twephase tradeoff analysis facility requires that a weight has been
defined for at least one objective component in the first phase.

2. If no deviation bounds are specifiede second phase will be omitted.

3. Automatic discounting of any commodity or fldwased UC component is
possible by using a new UC_ATTR option OPERDISCO which could be applied
e.g. to the usedefined objective components in Phase 1.

4. The twophase tradeofinalysis can be carried over a set of distinct cases, each
identified by a unigue SOW index.

6.2 Multiphase tradeoff analysis

The multiphase tradeoff analysis is otherwise similar to thepiwase analysis, but in this
case the objective function can bdidked in the same way as in the Phase 1 described

above also in all subsequent phases. The different objective functions in each phase are
distinguished by using an additional phase index (the SOW index). Deviation bounds can

be specified in each phaseckuhat they will be in force over all subsequent phases (any
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user constraints), or only in some of the succeeding phases (any user constraints
excluding OBJ1). The deviation bounds defined on any of thededigred objectives
OBJ1 will thus always be pserved over all subsequent phases.

Remark: Although the multiphase tradeoff analysis allows the use of anydeseed
objective functions in each phase, it is highly recommended that the origindhabjec
function be used in the last phase, so thaettonomieneanings maintained in the final
solution.

Theprocedure was presented in a very general form, in order to let the user exert her
ingenuity at will. Typical simple examples of using the feature may be useful.

Examplel: tradeoff between casand risk.

First, a special UC (call it RISK) is defined that expressgsiaal risk measureThe
successive phases consist in minimizimg followingparameterizedbjective:

= A O B T A
where " is a user chosen coefficient that may be varied within a range to explore an entire

tradeoff curve such as illustrated in figuéel, where the vertical axis represents the
values of the cost objective function, and the horizontal axis the riskungea
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Figure 6.1 Tradeoff between Risk and Cost
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OBJZ* is the lowest value for OBJZ, corresponding to a relatively large valier R

RISK, i.e. when " = 0. As " increases, RISK decreases and OBJZ increases. In this
exampe, 4 alternate values dfvere chosen until the value of OBJZ becomes very large,
at point (R,0OBJZ). This would correspond to very large value for ", i.e. a point where
RISK is minimized.

An example of such an analysis is fully developelanudia etl (2013),where a risk
index is constructed to capture an indicatoermérgy security for the European Union. A
complex (but linear) risk measure was developezl/tduatehe riskfor a large number

of alternative channels of energy imponwithe EU, and the tradadf between risk and
overall cost was explored.

Example 2 exploring the opportunity cost of the nuclear option
At phase 1, the origin®BJZis minimized with the habitual TIMES constraints. This
results in an optimal co81BIZ*. At phase 2, the objective function is equal to the total

nuclear capacity over the entire horizon and over all regions, and a new constraint is
added as follows:

"gg 1L (1 D) HIEs !
The " parameter may be varied to explore the entire {odideurve. A last phase may

also be added at the end, with OBJZ as objective function, and a user selected value for
the maximum level of nuclear capacity.
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7 The TIMES Climate Module

This chapteprovidesa detailed description of the theoretical approachntakenodel
changes in atmospheric greenhouse gas concentrations, radiative forcing, and global
mean temperatures in the TIMES Climate ModalgpendixA of Part Il contains a full
description of the implementation of the Climate Modnl&@IMES, including

parameters, variables, and equatjassrepresented in the TIMES code.

The Climate Module starts from global emissions of CO2, CH4, and N20, as generated
by the TIMES global model, and proceeds to compute successively:

¥ the changes CO2, CH4, and N2Oancentrations via three separate sets of
equations;

¥ the totalchange (over prendustrial times) in atmospheric radiative forcing
resulting from the three gases plus an exogenously specified additional forcing
resulting from other causes (other anthropagand/or natural causes, as defined
by the user), and

¥ the temperature changes (over-pr@ustrial times) in two reservoirs (surface and
deep ocean).

The climate quations used tperform these calculations weadapted from Nordhaus
and Boyer (1999)yho proposea three reservoir model for the CO2 cycle 8nifhis
leads tdinear recursive equations for calculati@@?2 concentrationgn each reservoir.
The temperature equations use a-teservoir model leading also to linear equations.
The forcing guationis the one used in most climate models, and islinear.

In TIMES, we have modeled separately the life cycles of two other Gb3{dles CO2,
namely nethane anditrous oxide. Tiese linear equations give results that are good
approximations ofttose obtained from more complex climate models (Dreuat,
2004; Nordhaus and Boyer, 1999).

The nonlinear radative forcing equation used in virtually all climate models was
replacedn TIMES by a linear approximation whose values closely apprdaketact
ones as long as the useful range is carefully selected. This was done in order to keep the

320ther important GHGOs such as CH4 and N20 may either be expresseddquB@Rnt, or a special
exogenous forcing term may be added to @@eing. The latter approach is not attractive as it keeps two
major GHGOs fully exogenous.
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entire model linear, and therefore to allow the user to set constraints on forcing and on
temperature as well as on concentrations and on emissions.

The temperature equations have been kept as in Nordhaus and Boyer.

We now describe the mathematical equations used at each of the three steps of the
climate module.

7.1 Concentrations (accumulation of CO2, CH4, N2%)

a) CO2 accumulation is represented aditiear threereservoir model belowthe

atmosphere, the quickly mixing upper ocean + biosphere, and the deep ocean. CO2 flows
in both directions between adjacent reservoirs. Fres8rvoir model is represented by

the following 3 equations when the steplw# recursion is equal to one year:

Matm (y) = E(y) + (1D" atm-up) Matm (y'l) +" up-atm I\/Iup (y'l) (7-1)
Mup (Y) = (18" upatmD” upio) Mup (Y-1) + * atmup Matm (Y-1) + " 10-up Mio (y-1) (7-2)
Mio (Y) = (1D" i0-up) Mio (Y-1) + " upio Mup (y-1) (7-3)
with

¥ Mam(y), Mus(Y), Mib(y): Concentratior{expressed massunits) of CO; in
atmosphere, in a quickly mixing reservoir representing the upper level of the
ocean and the biosphere, and in deep oceans (GtC), respedatiyelsr y(GtC)

¥ E(y) = CQ emissions in yeay (GtC)

¥ #;, transport rate from reservoita reservoir j (i, j = atm, up, lo) from yearlyto
y

b) CH4 accumulation is represented by aalbed singlebox model in which the
atmospheric methane concentration obeys the followgogteons assuming a constant

annual decay rate of the anthropogenic concentratiqng (whereas the natural
concentration is assumed in equilibrium):

CHA () = (1! # ca) "CHA (Y ! 1) + EA(Y) (7! 4)

CH4,,(y)=CH4,(y!' ) (715

% 1n keeping with the literature, we have expressed all concentrations as masses in megatonnes.
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where

¥

g UL (7-6)

CH4atm,, CH4yp ,CH4, , andEAcH4 are respectively: the anthropogenic
atmospheric concentration, the natamhosphdc concentratioff, the total
atmospheric concentration (all three expressed in Mt), and the anthropogenic
emission of CH4 (expressed in Mt/yr). The anthropogenic emisEidxs;

are generated within the model and enter the dynamic equatnn( order

to derive the antiopogenic concentration. Note that the natural concentration
CH4,4s constant at all timeg§See initial values fothese and other parameters
in Part I, Appendix A.)

CH4is then reported and used in the forcing equations. All quantities are
indexed byyear.

1" ! ,.is the oneyear retentia rate of CH4 in the atmosphere

dcha =2.84 (the density ofCH4, expressed iMt/ppby) is then used to convert
concentration in Mt into ppbv for reporting purposes.

c) N20 accumulation is also represshby a singldox model in a manner entirely
similar to CH4, although with different parameter values. The corresponding equations
are as follows:

N20,,(Y) = (1! " §20) N20,,(y! 1)+ EA 0 (Y)

N20,,(y) = N20,,(y! 1)

N20

tot

(¥) = N20,,(y) + N20,,(y)

7.2 Radiative forcing

We assume, as is routinely done in atmospheric sciencéhéhatmospheric radiative
forcings caused by the varioussga are additive (IPCC, 2007Thus:

¥ Note that the subscripsgmandup, which for the CO2 equationsfegred to the atmosphere and upper
reservoirs, have been reused for the CH4 and N20O equations to stand for anthropogenic and natural
concentrations.
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PE(Y) =! Feoa (V) +! Foya(Y) +! Fyao(y) + EXOFOR(Y) (7" 7)
We now explain these four terms.

a) The relationship between CO2 accumulation and increased radiative f@feing(y),
is derived fom empirical measurements and climate models (IPCC &0 2007.

n Fcoz()/) :#* ln(Matlrrll](;/)/MO)

where:
¥ Mg (i.e.CO2ATM_PRE_IND) is the prmdustrial (circa 1750) reference
atmospheric concentration of CO2 = 596.4 GtC
¥ #is the radiativdorcing sensitivity to atmospheric G@oncentration doubling =
3.7 Wint

b) The radiative forcing due to atmospheric CH4 is given by the following expression
(IPCC 200), where the subscripot has been omitted

#Fona(y) =0.036(/CH4, | JCH4, )1 [f(CH4,,N20,)! f(CH4,,N20,)] (7!8)

c) The radiative forcing due to atmospheric N20O is given bydlewing expression
(IPCC, 2007

#Fuo(y) =012"(/N20, 1 |[N2O, )! [f(CH4,,N20,)! f(CH4,,N20,)] (7! 9)
where:

f(xy)= O.47"|n[l+ 2.01"10°"(xy)*"*+5.31"10'* "X(Xy)1'5ZJ (7! 10)

Note that the f(x,y) function, which quantifies the creffects on forcing of the presence
in the atmophere of both gases (CH4 and N20), is not quite symmetrical in the two
gases. As usual, the 0 subscript indicates thénpltestrial times (1750)

d) EXOFOR(y) is the increase in total radiative forcing at period t relative to pre

industrial level due t&HGOs that are not represented explicitly in the model. Units =

W/m?. In Nordhaus and Boyer (1999), only emissions of CO2 were explicitly modeled,
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and therefore EXOFOR(y) accounted for all other GHGOs. In TIMESahd CH are

fully accounted for, but soenother substances are not (e.g. CFCOs, aerosols, ozone,
volcanic activity, etc.). Therefore, the values for EXOFOR(y) will differ from those in
Nordhaus and Boyer (1999). It is the modelerOs responsibility to include in the calculation
of EXOFOR(y) the fecing from only those gases and other causes that are not modeled.
The careful modeler may also want to adapt the EXOFOR trajectory to particular
scenarios. This has been done using alternative trajectories for EXOFOR provided by
other models, as was doimea multtmodel, multiscenario study conducted at the

Energy Modeling ForumQlarke et al., 2009

The parameterization of the three forcing equati@rg, (-9, and7-10) is not
controversial and relies on the results reported by Working Group | tR@@. IPCC
(2001, Table 6.2, p.358) provides a value of 3.7 for $, smaller than the one used by
Nordhaus and Boyer ($ = 4.1). We have adopted this lower value of 3 7a#/tefault
in TIMES. Users are free to experiment with other values of the $ paraiftetesame
reference provides the entire expressions for all three forcing equations.

7.3 Linear approximations of the three forcings

In TIMES, each of the three forcing expressions is replaced by a linear approximation, in
order to preserve linearity of the entire model. All three forcing expressiensncave
functions. Therefore, two linear approximations are obvious candidateBrstlome is

an approximation from below, consisting of the chord of the graph between two selected
endpoints. The second one has the same slope as the chord and is tangent to the graph,
thus approximating the function from above. The final approximaditime arithmetic

average of the two approximations. These linear expressions are easily derived once a
range of interest is defined by the user.

As an example, we derive below the linear approximation for the CO2 forcing
expression. The other approxitisas ae obtained in a similar manner

Linear approximation for the CO2 forcing expressidsee technical no®TIMES
Climate Module@or similar approximations of the other two forcings):

First, an interval of interest for the concentration M mustddected by the user. The

interval should be wide enough to accommodate the anticipated values of the
concentrations, but not so wide as to make the approximation inaccurate. We denote the
interval (M,My).
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Next, the linear forcing equation is taken las half sum of two linear expressions, which
respectively underestimate and overestimate the exact forcing value. The underestimate
consists of the chord of the logarithmic curve, whereas the overestimate consists of the
tangent to the logarithmic curvesaths parallel to the chord. These two estimates are
illustrated inFigure 7.1where the interval (MM,) is from 375 ppm to 550 ppm.

By denoting the préndustrial concentration level &4, the general formulas for the two
estimates are as follows:

Owerestimate: ) ) $
F(M) = ! I lopel M
1(M) In2 g@(slope!ln(Z)!Mo)( #+sop
Underestimate: F,(M)=#"In(M,;/My)/In2+slope’(M ! M,)
slope= #,,In(leMl)/InZ
where: (M, ! M))
Final approximation F,(M) = F(M) +F,(M)

2

7.4 Temperature increase

In the TIMES Climate Module as in many other integrated models, climate change is
represented by the global mean surface temperature. The idea behind tégetwoir

model is that higher radiative forcing warms the atmospheric layer, which then quickly
warms the upper ocean. In this model, the atmosphere and upper ocean form a single
layer, which slowly warms the second layer consisting of the deep ocean.

#Tup(y) = #Tup(y-1) +$i{F(y) Dofup(y-1) DS [#Tup(y-1) DHTow(y-1)I}  (7-11)
#Tiow(Y) = #Tiow(y-1) + Ss[#Tup(y-1) P#Tiow (y-1)] (7-12)

with

¥ %T,, = globally averaged surface temperature increase abovedustrial level,
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The two linear estimates of the forcing curve
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Figure 7.1. lllustration of the linearization of the CO2 radiative forcing function

¥ %Tow= deepocean temperatuiacrease above piiadustrial level,

¥ &= l-year speed of adjustment parameter for atmospheric temperature (also
known as the lag parameter),

¥ &= coefficient of heat loss from atmosphere to deep oceans,

& = l-year coefficient of heat gain by deep oceans,

¥ ' =feedback parameter (climatic retroaction). It is customary to wete '
" =HC,, Csbeing the climate sensitivity parameter, defined as the change in
equilibrium atmospheric temperature induced by a doubling gicG@entration.
In contrast with mostther parameters, the value qfi€higHy uncertain, wih a
possible range of values frofiCLto 10C. This parameter is therefore a prime
candidate for sensitivity analysis, or foeatment byprobabilistic methods such
as stochastic programming.

#H

For more details on thenplementation of the Climate Module TIMES, including
parameters, variables, and equatjassrepresented in the TIMES codeeAppendixA
of Part Il
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8 The Stochastic Programming extension

8.1 Preamble to chapters 8 to 11

Recall thathe core TIMES paradigm described in chap®rd,and5 makes several
basic assumptions:

¥ Linearity of the equations and objective function
¥ Perfect foresight of all agents’er the entire horizon
¥ Competitive markets (i.e. no market power by any agent)

If any or all of these assumptions are violated, the properties of the resulting equilibrium
are no longer entirely valid. In the following four chapters, we present four variants of the
TIMES paradigm that depart frothe core model. Each of thegariarts (extensions)

departs from one or more assumptions above, as follows:

¥ Stochastic Programming TIMES extension: departs from the perfect foresight
assumption and instead assumes that certain key model parameters are random.
This extension requires the usiestochastic programming rather than the usual
deterministic linear programming algorithm;

¥ Limited horizon TIMES extension: departs from the perfect foresight assumption
and replaces it by an assumption of limited (in time) foresight. This extension
requires the use of sequential linear programming rather than a single global
linear optimization;

¥ Lumpy investments extension: departs from the linearity assumption and replaces
it by the assumption that certain investments may only be made in discrete unit
rather than in infinitely divisible quantities. This extension requires the use of
mixed integer programming (MIP) instead of Linear programming;

¥ The endogenous technological learning (ETL) extension: departs from the
linearity assumption for the costtechnologies and replaces it by an assumption
that the costof some technolags aredecreasing functiaof the cumulative
amouns of the technoloigs, i.e. a learning curve is assuméldis entails that
some pad of the objective function arenlinear and nostonvex, and requires
the use of MIP.

95



Remark None of these four extensions departs from the competitive market assumption.
It is alsopossible to simulate certaiypes of norcompetitive behaviousing TIMES.

For instance, it has been possib simulate the behavior of the OPEC oil cartel by
assuming that OPEC imposes an upper limit on its oil production in order to increase its
long term profit Loulou et al, 200¥. Such uses of TIMES are not embodied in new
extensionsRather, they arieft to the ingenuity of the user.

8.2 Stochastic Programming concepts and formulation

Stochastic Programming is a method for making optimal decisions under risk. The risk
consists ofacinguncertainty regarding the values of some (or all) of the LP parameters
(cost coefficients, matrix coefficients, RHSs). Each uncertain parameter is considered to
be a random variable, usually with a discrete, known probability distribution. The
objective function thus becomes also a random variable and a criterion mussée icho
order to make the optimization possible. Such a criterion may be expected cost, expected
utility, etc., as mentioned by Kanudia and Loulou (1998jchnical not@©TIMES
Stochastic@rovides a more complete description of the TIMES implementation

Uncertainty on a given parameter is said to be resolved, either fully or partially, at the
resolution timei.e. the time at which the actual value of the parameter is revealed.
Different parameters may have different times of resolution. Both the resadtinties

and the probability distributions of the parameters may be represented on an event tree,
such as the one of figuBel, depicting a typical energy/environmental situation. In figure
8.1, two parameters are uncertain: mitigation level, and demamdigrate. The first

may have only two values (High and Low), and becomes known in 2010. The second
also may have two values (High and Low) and becomes known in 2020. The probabilities
of the outcomes are shown along the branches. This example assurpesstattime is
2000. This example is said to have three stages (i.e. two resolution times). The simplest
nonttrivial event tree has only two stages (a single resolution tiaeh pathway along

the event tree, representing a different realization ofitlcertain parameters is referred

to as a statef-the-world (SOW).

Thekey observationis that prior to resolution time, the decision maker (and hence the
model) does not know the eventual values ofutheertainparameters, but still has to

take decisins.On the contrary, after resolution, the decision maker knows with certainty
the outcome of some event(s) andsubsequentecisions will be different dependiog
which outcome has occurred.
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For the examplshown infigure 8.1, in 2000 and 2010 theoan be only one set of

decisions, whereas in 2020 there will be two sets of decisions, contingent on which of the
mitigation outcomes (High or Low) has occurred, and in 2030, 2040, 2050 and 2060,
there will be four sets of contingent decisions.

() () /)
: -/ —/ S
: figh growth 40%
High mitigation '
50% :
: QW growth 60%
: () () C )
—/ -/ -
() () f)
: —/ —/ S
' flgh growth 50%
Low mitigation '
50% :
: QW growth 50%
() () f)
—/ —/ S
Stage 1 Stage 2 Stage 3
2000 2010 2020 2030 2040 2050 2060

Figure 8.1. Event Tree for a threstage stochastic TIMES Example.

This remark leads directly to the following general mpériod, multistage stochastic
programin Equations 8L to 83 below. The formulation describdxre is based on
Dantzig (183, Wets (189), or Kanudia and Loulou (199%nd uses the expected cost
criterion. Note that this is a LP, but its sizenachlarger than that of the deterministic
TIMES model.

Minimize
Z=H H# C(t9)" X(t9)" p(tS) (8!1)
t$T sBS(t)
Subiject to:
Alt,s)" X(t,s)! b(t,s)" s! S(T),t!' T (8-2)
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# D(t,9(t,9)" X(t,g(t,9))! &s) (8-3)

t$T "sl S(T)
where
t = time period
T = set of time periods
S = state index
S(t) = set of state indices for time period t;

For Figure8.1, we haveS(2000) = 1;S(2010) = 1; S(2020) =1,2; S(2030) = 1,2,3,4;
S(2040) =1,2,3,4; S(2050) =1,2,3,4; S(2060) =1,2,3,4;

ST) = set of state indices at the last stage (the setexfario3. SetS(T)is
homeomorphic to the set of paths from period 1 to last peridtgievent
tree.

g(t,s = a unique mapping fror{(t,s) | s! S(T)} to St), according to the event tree.

g(t,s)is the state at peridccorresponding to scenarso

X(t,9) = the column vector of decision variables in period t, under state s

C(t,9) = the cost row vector

p(t,s) = event probabilities

A(t,s) = the LP submatrix of single period constraints, in time period t, under state s

b(t,s) = the right hand side column vector (single period constraints) in time period t,
under state s

D(t,s) = the LPsubmatrix of multirperiod constraints under state s

e(s) = the right hand side column vector (myggriod constraints) under scenario s

Alternate formulation : The above formulation makes it a somewhat difficult to retrieve
the strategies attached teetvarious scenarios. Moreover, the actual writing of the
cumulative constraints{3) is a bit delicate. An alternate (but equivalent) formulation
consists in defining one scenario per path from initial to terminal period, and to define
distinct variables((t,s)for each scenario and each time period. For instance, in this
alternate formulation of the example, there would be four variagtes) at every

periodt, (whereas there was only one variable X(2000,1) in the previous formulation).

Minimize
Z=#H H# C(t,s)" X(t,9)" p(tS) (8!'1)’
BT s$S(t)
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Subiject to:

At,s)" X(t,s)! b(t,s) all't, all s (8N 2)0
# D(t,9)" X(t,9)! es)allt, alls (8N 3)0
t$T

Of course, in this approach we need to add equality constraints to express the fact that
some scenarios are identical at some periods. In the example of &lgwe would
have:

X(2000,1)=X(2000,2)=X(2000,3)=X(2000,4
X(2010,1)=X(2010,2)=X(2010,3)=X(2010,4),
X(2020,1)=X(2020,2),

X(2020,3)=X(2020,4).

Although this formulation is less parsimonious in terms of additional variables and
constraints, many of these extra variables and constraints are in fact elimintdted by
pre-processor of most optimizers. The main advantage of this new formulation is the ease
of producing outputs organized by scenario.

In the current implementation of stochastic TIMES, the first approach has been used
(EquationsB-1to 8-3). Theresults are however reported for all scenarios in the same way
as in the second approach.

In addition, in TIMES there is also an experimental variant for the modeling of recurring

uncertainties with stochastic programming, described in Appendixtéchncal note
OTIMESStochasticO

8.3 Alternativecriteria for the objectivefunction

The preceding description of stochastic programming assumes that the policy maker
accepts the expected cost as his optimizing criterion. This is equivalent to saying that he
is risk neutral. In many situations, the assumption of risk neutrality is only an approxi
mation of the true utility function of a decision maker.

Two alternative candidates for the objective function are:

¥ Expected utility criterion with linearized rigversion
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¥ Minimax Regretriterion (Raiffa, 1963, applied inLoulou and Kanudia, 1999)

8.3.1 Expected utility aterion with risk aversion

The first alternative has been implemented into the stochastic version of TIMES. This
provides a feature for taking into acmt that a decision maker may be risk averse, by
defining a new utility function to replace the expected cost.

The approach is based on the classielfodel (an abbreviation for Expected Value
Variance). In the B/ approach, it is assumed that theiaace of the cost is an

acceptable measure of the risk attached to a strategy in the presence of uncertainty. The
variance of the cost of a given strategy k is computed as follows:

Var(C,) =1 P, ¥(Cosli|k " EC,)?
i
whereCosfy is the cost when stratedyis followed and th¢" state of nature prevails,
andECy is the expected cost of stratdgydefined as usual by:

EC, =1 p;¥Cost,
]
An E-V approach would thus replace the expected cost criterion by the following utility

function to minimize:
U=EC+ ”!,/var(C)

where>0 is a measure of the risk aversion of the decision maker. For '=0, the usual
expeded cost criterion is obtainedarger values of indicate increasing risk aversion.

Taking risk aversion into account by this formulatwould lead to a notinear, non

convex model, with all its ensuing computational restrictions. These would impose
serious limitations on model size.

8.3.2 Ultility function with linearized risk @ersion

To avoid norlinearities, it is possible to péace the smi-variance by the pperabsolute
deviation, defined by:
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—_ n +
UpAbsDev(Cost) =1 p, ¥{Cosgk ECk}
j
wherey= {x}" is defined by the following twbnear constraints:y " x , andy " 0, and
the utility is now written via the followingnear expression:

U =EC+ "!UpsAbsDe(C)

This is the expected utility formulation implemented into the TIMES model generator.

8.4 Solving approaches

General multistage stochastic programming problems of the type described above can be
solved by standard deterministic algorithms by solvingl#terministic equivalent of the
stochastic model. This is the most straightforward approach, which may be applied to all
problem instances. However, the resulting deterministic problem may become very large
and thus difficult to solve, especially if inegvarables are introduced, but also in the

case of linear models with a large number of stochastic scenarios.

Two-stage stochastic programming problems can also be solved efficiently by using a
Benders deomposition algorithm\Wets, 1989. Thereforethe classical decompition
approach to solving large mukttage stochastic linear programs has been nested Benders
decomposition. However, a mufitage stochastic program with integer &bkes does

not, in general, allow a nested Benders decompasi@ionsequently, more complex
decompositions approaches are needed in the general case (e.g.-Daffizig
decomposition with dynamic column generation, or stochastic decomposition methods).

The current version of the TIMES implementation for stochastigramming is solely
based on directly solving the equivalent deterministic problem. As this may lead to very
large problem instances, stochastic TIMES models are in practice limited to a relatively
small number obranches of the event tree (SOW'S)

8.5 Economic interpretation
The introduction of uncertainty alters the economic interpretation of the TIMES solution.

Over the last two decades, economic modeling paradigms have evolved to a class of
101



equilibria calledDynamic Stochastic General Equilibria (DSGEg references Chen and
Crucunj 2012 de Walque et gl2005 Smets et al2007) In the case of Stochastic
TIMES, we are in the presence of a Dynamic Stochastic Partial Equilibria (DSEER
much less developed literatuifehecomplete characteridan of a DSPHEs beyond the
scope of this documentation, but it is useéfuhote some of its propertieshich derive
from the theory of Linear Programmirag follows:

¥ During the first stage (i.e. before resolution of any uncertainties), the meaning of
the primal solution is identical to that of a deterministic TIMES run, i.e. of a set of
optimal decisions, whereas the meaning of the shadow prices is éxqieated
priceqresp. expected marginal utility changesjhe various commoditieShis
is sobecause the shadow price is the marginal change in objective function when
a commodity's balance is marginally altered, and the objective function is an
expected cogresp. an expected utility functian)

¥ During subsequendtags, theprimal values of angiven branch of the event tree
represent the optimal decisiotenditional on the corresponding outcome being
true, and the shadow prices are theectetf pricesof the commodities also
conditional on the corresponding outcome being true.

% The expected prices become deterministic prices if the stage is the last one, so that there isaimyuncert
remaining at or after the current period.
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9 Using TIMES with limited foresight (time-stepped)

It may be useful to simulate market conditions where all agents take decisions with only a
limited foresight of a few years or decades, rather than the very long term. By so doing, a
modeler may attempt to simulateatworld” decision making conditions, rather than
socially optimal ones. Both objectives are valid provided the modeler is well aware of
each approach's characteristics.

Be that as it may, it is possible to use TIMES in a series ofgteyged runs, eaavith

an optimizing horizon shorter than the whole horizon. The option that enables this mode
is named FIXBOH, whiclireezeghe solution over somaser chosegears, while letting

the model optimize ovdateryears. The FIXBOH feature has several agpicns and is

first described below before a full description of the tstepped procedure.

9.1 The FIXBOH feature

This featurerequires thatminitial run be madérst, and then FIXBOH sets fixed bounds
for a subsequent run according to the solutionesfrom thenitial run up to the last
milestone year less than or equal to the year specified by the FIXBOH quenrtaoheter
For instance, the initial run may beederence casavhich is run from 2010 to 2100, and
the FIXBOH value might beet at2015 in which case a subsequent run would have
exactly the same solution values as the egfee case up to 2015. This is an extremely
convenient feature to use in most situations.

As a generalization to the basic scheme described above, the ussooayaést fixing
to the previous solution differemetsof fixedyears accating to region.

Example: Assume that you would like to analyze therg&g§ion ETSAP TIAM model

with some shocks after the year 2030, and you are interested in differences in the model
solution only in regions that have notable gas or LNG trade with the EU. Therefore, you
would like to fix the regions AUS, CAN, CHI, IND, JPN, MEX, ODA and SKO

completely to the previous solution, and all other regions to the previous solution up to
2030.
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9.2 The timestepped optionT{IMESTEP)

The purpose of the TIMESTEP option is to run the modalstepwise manner with

limited foresight. The TIMESTEP control variable specifiesrthmberof years that

should be optimized in each solution step. The total model horizon will be sohaed by
series okuccessive steps, so that in each step the peddmsdptimized are advanced
further in the future, and all periods before them are fixed to the solution of the previous
step(using the FIXBOH feature)t is important that any two successive steps have one
or more overlapping period(s), in order to iresoverall continuity of the decisions

between the two stefm the absence of the overlap, decisions taken ansiejuld

have no initial conditions and would be totally disconnected fromrstiegecisions

Figure9.1 illustrates the stewise soluton approachvith a horizon of 8 periods and 6
successive optimization stefisach step has a 2 period dutirizon,andthere is also an
overlap of one period betweearstep and the nexilore explicitly: at step 2, all period 2
variables are frozen at thalues indicated in the solution of step 1, and period 3 is free to
be optimized. At step 3, period 3 variables are frozen and period 4 is optimized, etc.

U] Fixed periods @ Active periods

Run step

Periods in model horizon

Figure 9.1. Sequence of optimized periods in the stepped TIMES solution approach.
Each runincludes also the fixed solution of all earlier periods.

The amount of overlapping years between successive steps is by default half of the active
step length (the value of TIMESTEP), but it can be controlled by the user.

Important remarkas mentionedbove, the user chooses taegthsof the sub-horizons
and the length of the overlagmth expressed in yeaiBecause the time periods used in
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the model may be variable and may not always exactly match with thiestgp and
overlap, the actual activeteplengths and overlaps may diffeomewhatrom the values
specifiedby the userAt each step the model generaises a heuristic th&ies to make

a best match between the remaining available periods and the prescribed step length.
However, at eachtepit is imperative thaat least one of the previously solved periods

must befixed, and at least one remaining new period is taken into the active optimization
in the current step.
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10 The Lumpy Investment extension

In some cases, the linearity projyeof the TIMES model may become a drawback for

the accurate modeling of certain investment decisions. Consider for example a TIMES
model for a relatively small community such as a city. For such a scogeatihdarity

of some investments may have totaéken into account. For instance, the size of an
electricity generation plant proposed by the model would have to conform to an
implementable minimum size (it would make no sense to decide to construct a 50 MW
nuclear plant). Another example for meéigion modeling might be whether or not to

build crossregion electric grid(s) or gas pipeline(s) in discrete size increments. Processes
subject to investments of only specific size increments are described as OlumpyO
investments.

For other types of investmts, size does not matter: for instance the model may decide to
purchase 10,950.52 electric cars, which is easily rounded to 10,950 without any serious
inconvenienceespecially since this number is an annual figlitee situation is similar

for a numbef residentibor commercial heating devices;, for the capacity of wind
turbines; or of industrial boilers; in shoiby any technologies with relatively small
minimum feasible sizes. Such technologies would not be candidates for treatment as
OlumpyO irestments.

This chapter describes the basic concept and mathematics of lumpy investment option,
whereas the implementation details are availabRa II, section 6.3.24We simply

note here that this option, while introducing new variablescandtraints, does not affect
existing TIMES constraints.

It is the userOs responsibility to deaidiether or notertain technologies should respect
the minimum size constraint, weighing the pros and cons of so doing. This chapter
explains how the TIME®&P is transformed into a Mixed Integer Program (MIP) to
accommodate minimum or multiple size constraints, and states the consequences of so
doing on computational time and on the interpretation of duality results.

The lumpy investment option availableTHMES is slightly more general than the one
described above. It insures that investment in techndaggqual to one of a finite
numberN of predetermined size®, Si(t), S(t), E,Sn(t). This is useful when several
typical plant sizes are feasiblethre real worldAs implied by the notation, these discrete
sizes may be different at different time periods. Note that by choosingdizes as the
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successive multiples of a fixed numi&iit is possible to invest (perhaps many times) in
a technology wh fixed standard size.

Imposing such a constraint on an investment is unfortunately impossible to formulate
using standard LP constraints and variables. It requires the introductiaagsr
variablesinto the formulation. The optimization problem rkigig from the introduction

of integer variables into a Linear Program is called a Mixed Integer Program (MIP).

10.1Formulation and lution of the Mixed Integer Linear Program

Typically, the modeling of a lumpy investment involves Integer Variablesarables
whose values may only be noegative integers (0, 1, 2, E). The mathematical
formulation is as follows:
N
VAR_NCAP(p,t) =# S(p,t)"Z (p,t) eacht =1,..,T

i=1

with
Z(p,t)=0o0r1

and
N
i=1

The second and third constraitagen togetheimply that at most one of thévariables
is equal to Jand all othes are equal to zerdherefore, the first constraint now means
thatNCAP is equal to one of the preset sizes or is equal to 0, which is the desired result.

Although the formulation of lumpy investmemt®kssimple, it has a profound effect on

the resulting optimization program. Indeed, MIP problems are notoriously more difficult
to solve than LPs, and in fact many of the properties of linear programs discussed in the
preceding chapters do not hold for MIigluding duality theory, complementary
slackness, etc. Note that the constraint Zfpit) should be 0 or 1 departs from the
divisibility property of linear programs. This means thatféasibility domairof integer
variables (and therefore of someastment variables) is no longer contiguous, thus
making it vastly more difficult to apply purely algebraic methods to solve MIPOs. In fact,
practically all MIP solution algorithms make use (at least to some degree) of partial
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enumerative schemes, which deto be time consuming and less relidbtaan the
algebraic methods used in LP.

The reader interested in more technical details on the solution of LPs and of MIPs is
referred to references (Hillier and Lieberman, 1990, Nemhauser et al. 1989). In the next
section we shall be content to state one important remark on the interpretation of the dual
results from MIP optimization.

10.2Discrete early retirement of capacity

The discrete retirement of capaditat was briefly mentioneith section5.4.11requires a
treatmentjuite similar to that of discrete addition to capacity presented here. The
complete mathematical formulation mimics that presented above, and iddsdsibed
in Part I, section6.3.26,0f the TIMES documentation.

10.3Important remark on the MP dual solution (shadow prices)

Using MIP rather than LP has an important impact on the interpretation of the TIMES
shadow prices. Once the optimal MIP solution has been found, it is customary for MIP
solvers to fix all integer variables at their optimal (integer) values, and to peaform
additional iteration of the LP algorithm, so as to obtain the dual solution (i.e. the shadow
prices of all constraints). However, the interpretation of these prices is different from that
of apureLP. Consider for instance the shadow price of the ahgas balance constraint:

in a pure LP, this value represents the price of natural gas. In MIP, this value represents
the price of gasonditional on having fixed the lumpy investments at their optimal integer
values.What does this mean? We shall atteapexplanation via one example: suppose
that one lumpy investment was the investment in a gas pipelinethieegas shadow

price will not include the investment cost of the pipeline, since that investment was fixed
when the dual solution was computed

% A TIMES LP program of a given size tends to have fairly constant solution time, even if the database is
modified. In contrast, a TIMES MIP may show some erratic solution times. One may observe reasonable
sdution times (although significantly longer than LP solution times) for most instances, with an occasional
verylong solution time for some instances. This phenomenon is predicted by the theory of complexity as
applied to MIP, see Papadimitriou ande§litz (1982).
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In conclusion, when using MIP, only the primal solution is fully reliable. In spite of this
major caveat, modeling lumpy investments may be of paramount importance in some
instances, and may thus justify the extra computing time and the partial losd of du
information.
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11 The Endogenous Technological Learning extension

In a longterm dynamic model such as TIMES the characteristics of many of the future
technologies are almost inevitably changing over the sequence of future periods due to
technologicalearning

In some cases it is possible to forecast such changes in characteristics as a function of
time, and thus to define a tirseries of values for each parameter (e.g. unit investment
cost, or efficiency). In such cases, technological learniegagenousince it depends

only on time elapsed and may thus be established outside the model.

In other cases there is evidence that the pace at which some technological parameters
change is dependent on terienceacquired with this technology. Suekperience is

not solely a function of time elapsed, but typically depends on the cumulative investment
(often global) in the technology. In such a situation, technological learning is
endogenoussince the future values of the parameters are no longectadn of time

elapsed alone, but depend on the cumulative investment decisions taken by the model
(which are unknown). In other words, the evolution of technological parameters may no
longer be established outside the model, since it depends on thiscerults.

Endogenous technological learnirigT() is also namedlearningBy-Doing (LBD) by
some authors.

Whereas exogenous technological learning does not require any additional modeling,
ETL presents a tough challenge in terms of modeling ingeandyof solution time. In

TIMES, there is a provision to represent the effects of endogenous learning on the unit
investment cost of technologies. Other parameters (such as efficiency) are not treated, at
this time.

11.1The basic ETL challenge

Empirical studes of unit investment costs of several technologies have been undertaken
in several countries. Many of these studies find an empirical relationship between the unit
investment cost of a technology at timeNVCOST,, and the cumulative investment in

t
thattechnology up to timg C. = | VAR_ NCAP.

j="1
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A typical relationship between unit investment cost and cumulative investments is of the
form:

INVCOST=a"C,” 11 )

where
¥ INVCOST’is the unit cost of creating one unit of the technology, which is no
longer a constant, but evolves as more units of the technology are produced,;
¥ ais thevalue of NVCOSTor the first unit of the technologyvhenC; is equal to
1) and,;
¥ bis the learnig index, representing the speed of learffing

As experience builds up, the unit investment cost decrgastesitiallyrendering
investments in the technology more attractive. It should be clear thagightad

investors will not be able to detect thédvantage of investing early in learning
technologies, since they will only observe the high initial investment cost and, being
nearsighted, will not anticipate the future drop in investment cost resulting from early
investments. In other words, tappig tfull potential of technological learning requires
far-sighted agents who accept making initially fppofitable investments in order to later
benefit from the investment cost reduction.

With regard to actual implementation, simply usfdr1) as the objective function
coefficient ofVAR_NCAP; will yield a nortlinear, nonconvex expression. Therefore,
the resulting mathematical optimization is no longer linear, and requires special

techniques for its solution. In TIMES, a Mixed Integer Pangming (MIP) formulation
Is used, that we now describe.

11.2The TIMES formulation of ETL

11.2.1 The cumulative investmenost

We follow the basic approach described in Barreto, 2001

3" The notation in this chapter is sometimes different from the standard notation for parameters and
variables, in order to conform to the more detailed technical note on the subject.
|t is usual to define, instead bf another parametapr called theprogress ratio which is related tb via

the following relationshippr = 2'®. Hence1-pris the cost reduction incurred when cumulative investment
is doubled. Typical observait values are in a range of .75 to .95.
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The first step of the formulation is to express the total investment eoshe.quantity
that should appear in the objective functibhe cumulativeinvestment costC; of a
learning technology in peridis obtained by integrating expressidri1):

TC :,chfa"y”’*oly:—lf‘b"c:t””1 (11! 2)

TC:is a concave function @, with a shape as shown in figuré 1
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800

400

Cumulative investment cost (B$)

Cumulative investment (TW)
Figure11.1. Example of a cumulative learning curve

With the Mixed Integer Programming approach implemented in TIMES, the cumulative
learning curve is approximated by linear segments, and binary variables are used to
represent some logical conditiofsgure 112 shows a possible piecewise linear
approximaion of the curve oFigure 111. The choice of the number of steps and of their
respective lengths is carefully made so as to provide a good approximation of the smooth
cumulative learning curve. In particular, the steps must be smaller for small valnes th

for larger values, since the curvature of the curve diminishes as total investment
increases. The formulation of the ETL variables and constraints proceeds as follows (we
omit the period, region, and technology indexes for notational clarity):
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1. The use specifies the set of learning technologies
2. For each learning technology, the user provides:
a) The progress ratipr (from which the learning indelxmay be inferred)
b) One initial point on the learning curve, denof€d, TCG)
c) The maximum allowed cumulge investmenCnax (from which the
maximum total investment co§Cnax may be inferred)
d) The numbeN of segments for approximating the cumulative learning
curve over th€Co, Cnay) interval
Note thateach of these parameters, includiignay be different for different
technologies.

3. The model automatically selects appropriate values fax tstep lengths, and
then proceeds to generate the required new variables and constraints, and the new
objective function coefficients for each learnieghnology. The detailed
formulae are shown and briefly commented on below.

TC

max

Cm ax

Cumulative investment cost

_|

CO__.

\4

Co Cumulative investment

Figure112. Example of a $egment approximation of the cumulative cost curve
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11.2.2 Calculation of break points and segment lengths

The successive inteal lengths on the vertical axis are chosen to be in geometric
progression, each interval being twice as wide as the preceding one. In this fashion, the
intervals near the low values of the curve are smaller so as to better approximate the
curve in its hjh curvature zone. L§TCi.1, TG} be thei™ interval on the vertical axis,
fori=1, E,N-1. Then:

TC, =TC,.,+2"V'(TC_ " TC,)/(1" 05"), i=12!N
Note thail Cyax is equal tol Cy.

The break points on the horizontal axis are obtained by pluggingh@s into
expressioni1-2), yielding:

c =§L Dac e is1o N
% a :

11.2.3 New variables

Once intervals are chosen, standard approaches are available to represent a concave
function by means of integer-@ variables. We describe the approach used in TIMES.
First,we defineN continuous variables, i= 1,E,N . Eachx; represents the portion of
cumulative investments lying in thi8 interval. Therefore, the following holds:

N
c=1 x 11" 3

i=1

We now defineN integer (B1) variables that serve as indicatoos whether or not the
value ofC lies in thei™ interval. We may now write the expression T&, as follows:

N
TC=! az+bx 11" 4

i=1

whereb; is the slope of thé" line segment, and is the value of the intercept of that
segment with the vécal axis, as shown in figure 13 The precise expressions &and
b; are:
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1=12,...,N

11"5
a =TC.," b IC., i=12,...,N

Cia G

Figure 11.3. The"l segment of the stepise approximation

11.2.4 New constraints

For (11-4) to be valid we must make sure that exactlympiseequal to 1, and the others
equal to 0. This is done (recalling that #theariables are-Q) via:

We also need to make sure that eadies within thei™ interval whenever; is equal to 1
and is equal to 0 otherwise. This is done via two constraints:

Cu'z" %" Clz
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11.2.5 Objective function terms

Re-establishing the period index, we see that the objective function term at fpéoiod
learning technology is thus equal®@;- TC,, which needs to be discounted like all
other investment costs.

11.2.6 Additional (optional) constraints

Solving integer programming problems is facilitated if the domain of feasibility of the
integer vaiables is reduced. This may be done via additional constraints that are not
strictly needed but that are guaranteed to hold. In our application we know that
experience (i.e. cumulative investment) is always increasing as time goes on. Therefore,
if the cumulative investment in period t lies in segment i, it is certain that it will not lie in
segments-1, i-2, .., lin time period+1. This leads to two new constraints-(re

establishing the period indéxor thez variables):

i=12.. N#1 t=12,..T#1
N N
! Zj,t $| Zj,t+1
j=i j=i

Sumnarizing the above formulation, we observe that each learning technology requires
the introduction ofN+T integer (01) variables. For example, if the model has 10 periods
and a 5segment approximation is selected, 50 integel) (Gariables are created fitrat
learning technology, assuming that the technology is available in the first period of the
model. Thus, the formulation may become very onerous in terms of solution time, if
many learning technologies are envisioned, and if the model is of large biegin with.

In section 115 we provide some comments on ETL, as well as a word of warning.

11.3Clustered learning

An interesting variation of ETL is also available in TIMES, namely the case where
several technologies use the same key technology (orar@nf), itself subject to
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learning. For instance, tabld.1 lists 11 technologies using the key Gas Turbine
technology. As experience builds up for gas the turbine, each of the 11 technologies in
the cluster benefits. The phenomenon of clustered leaisimgdeled in TIMES via the
following modification of the formulation of the previous section.

Let k designate the key technology andlletl, 2, E,L designate the set of clustered
technologies attached ko The approach consists of three steps:

Step 1: designateas a learning technology, and write for it the formulation
of the previous section;

Step 2: subtract from eatNVCOST the initial investment cost of technology
k (this will avoid double counting the investment cosk)pf

Step 3: addhe following constraint to the model, in each time period. This
ensures that learning érspreads to all members of its cluster:

L
VAR_NCAR" | VAR_NCAR=0

=1

Tablel11.1: Cluster of gas turbine technologies

(from A. Sebregts and K. Smekens, unpublished te3202)

Description

Integrated Coal gasification power plant
Integrated Coal Gasification Fuel Cell plant
Gas turbine peaking plant

Existing gas Combined Cycle power plant
New gas Combined Cycle power plant
Combined cycle Fuel Cell power plant
Existing gas turbine CHP plant

Existing Combined Cycle CHP plant
Biomass gasification: small industrial cog.
Biomass gasification: Combined Cycle power plant
Biomass gasification: ISTIG+reheat

11.4Learning in a multiregional TIMES nodel

Technologicalearning may be acquired via global or local experience, depending on the

technology considered. There are examples of tdogresthat were developed and
perfected in certain regions of therld, but have tended to remain regional, never fully

spreadingglobally. Examples are found in land management, irrigation, and in household
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heating and cooking devices. Other technologies are truly global in the sense that the
same (or close to the same) technology becomes rather rapidly commercially available
globdly. In the latter case, global experience benefits users of the technadolglyvide
Learning is said tspilloverglobally. Examples are found in large electricity plants, in
steel production, wind turbines, and many other sectors.

The first and obvios implication of these observations is that the appropriate model
scope must be used to study either type of technology learning. The formulation
described in the previous sections is adequate in two cases: a) learning in a single region
model, and b) ragnal learning in a multiregional model. It dasst directly apply to

global learningin a multiregional global model, where the cumulative investment

variable must represent the sum of all cumulative investments in all regions together. We
now describe mapproach to global learning that may be implemented in TIMES, using
only standard TIMES entities.

The first step in modeling multiregional ETL is to create one additional region, region 0O,
which will play the role of the Manufacturing Region. This cedds RES consists only of
the set of (global) learning technologies (LTOs). Each such LT has the following
specifications:

a) The LT has no commodity input.

b) The LT has only one output, a new commoditgpresenting the Olearningd. This
output is preciselygual to the investment level in the LT in each period.

c) Commodityc may be exported to all other regions.

Finally, in each OrealO region, the LT is represented with all its atekegpsthe
investment cost NCAP_COSHurthermore, the construction afe unit of the LT
requires an input of one unit of the learning commodltysing theNCAP_ICOM
parameter see chapter 3 of PART This ensures that the sum of all investments in the
LT in the real regions is exactly equal to the investment in thie kdgion 0O, as desired.

11.5Endogenous vs. exogenousdrning: a dscussion

In this section, we formulate a few comments and warnings that may be useful to
potential users of the ETL feature.

We start by stating a very important caveat to the ETL fortionlaescribed in the
previous sections: if a model is run with such a formulation, it is very likely that the
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model will select some technologies, amtl invest massively at some early periad

these technologies unless it is prevented from doing saldhyional constraints. Why

this is likely to happen may be qualitatively explained by the fact that once a learning
technology is selected for investing, two opposing forces are at play in deciding the
optimal timing of the investments. On the one hdine discounting provides an

incentive for postponing investments. On the other hand, investing early allows the unit
investment cost to drop immediately, and thus allows much cheaper investments in the
learning technologies in the current and all futunégas. Given the considerable cost
reduction that is usually induced by learning, the first factor (discounting) is highly
unlikely to predominate, and hence the model will tend to invest massively and early in
such technologies, or not at all. Of courgbat we mean by OmassivelyO depends on the
other constraints of the problem (such as the extent to which the commodity produced by
the learning technology is in demand, the presence of existing technologies that compete
with the learning technology, etcHowever, there is a clear danger that we may observe
unrealistically large investments in some learning technologies.

ETL modelers are well aware of this phenomenon, and they use additional constraints to
control the penetration trajectory of learnieghnologies. These constraints may take the
form of upper bounds on the capacity of or the investment in the learning technologies in
each time period, reflecting what is considered by the user to be realistic penetrations.
These upper bounds play a deteing role in the solution of the problem, and it is most
often observed that the capacity of a learning technology is either equal to O or to the
upper bound. This last observation indicates that the selection of upper bounds (or
capacity/investment growtrates) by the modeler is the predominant factor in controlling
the penetration of successful learning technologies.

In view of the preceding discussion, a fundamental question arises: is it worthwhile for
the modeler to go to the trouble of modelimglegenousearning (with all the attendant
computational burdens) when the results are to a large extent conditioexogeynous

upper bounds? We do not have a clear and unambiguous answer to this question; that is
left for each modeler to evaluate.

However, given the above caveat, a possible alternative to ETL would consist in using
exogenous learning trajectories. To do so, the same sequence of OrealisticO upper bounds
on capacity would be selected by the modeler, and the values of the unit investstent
(INVCOST) would be externally computed by plugging these upper bounds into the
learning formula 11-1). This approach makes use of the same exogenous upper bounds

as the ETL approach, but avoids the MIP computational burden of ETL. Of course, the
running of exogenous learning scenarios is not entirelypfoof, since there is no

119



absolute guarantee that the capacity of a learning technology will turn out to be exactly
equal to its exogenous upper bound. If that were not the case, a modified scen&tio w
have to be run, with upper bounds adjusted downward. Thisatréerror approach may
seem inelegant, but it should be remembered that it (or some other heuristic approach)
might prove to be necessary in those cases where the number of learningptgebn

and the model size are both large (thus making the rigorous ETL formulation
computationally intractable).
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12 General equilibrium extensions

12.1 Preamble

In order to achieve a general (as opposed to partial) equilibrium, the energy system
described in TIMES must be linked to a representation of the rest of the economy. The
idea of hardinking an energy model with the economy while still keeping the ragulti
model as an optimization program, dates back to theeHAERO model (Manne,

1977), where both the energy system and the rest of the economy were succinctly
represented by a small number of equations. This approach differs from the one taken by
the sacdled Computable General Equilibrium (CGE)pdels (Johansser®6Q
Rutherford1992, where the calculation of the equilibrium eslion the resolution of
simultaneous nctinear equations. In CGE's, the udgnonlinear, nonconvex)

equation solvers ling the size of the problem and thus the level of detail in the energy
system description. This computational difficulty is somewhat (but not completely)
alleviated when the computation relies on a singlelm@ar optimization program. Note
however that MCRO is a much simplified representation of the economy as a single
producing sector and no government sector, thus precluding the endogenous
representation of taxes, subsidies, ms#ittor interactions, etc. Therefore, the idea of a
linked TIMESMACRO madel is not to replace the CGE's but rather to create an energy
model where the feedbacks from the economy goes beyond the endogenization of
demands (which TIMES does) to include the endogenization of capital.

Some years after EFMACRO, MARKAL-MACRO (Manre-Wene, 1992) was
obtained by replacing the simplified ETA energy-sabdel by the much more detailed
MARKAL, giving rise to a large optimization model where most, but not all equations
were linear. The MERGE model (Manne et al., 1995) is a fredion vesion of ETA
MACRO with much more detail on the energy stdthough not as much as in
MARKAL -MACRO. The TIMESMACRO model (Remmdlesl, 2006) is based on
exactly the same approach as MARKMACRO. Both MARKAL-MACRO and
TIMES-MACRO were essentially singlegion models, until the muitegion version of
TIMES-MACRO (named TIMESMACRO-MSA, KypreoslLettila, 2013) was devised as
an extension that accommodates multiple regions.

In this chapter, we describe the single region and the-negjiibn versions of MES-
MACRO, focusingon the concepts and mathematical representation, whereas the
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implementation details are left to Part Il of the TIMES documentation and to technical
notes.

12.2 The singleregion TIMES-MACRO model

As was already discussed in chapter 4 ntlagn physical link between a TIMES model

and the rest of the economy occurs at the level of the consumption of energy by the end
use sectors. There are however other links, such as capital and labor, which are common
to the energy system and the resthafedconomy. Figurd2.1shows the articulation of

the three links in TIMESVMIACRO. Energy flows from TIMES to MACRO, whereas

money flows in the reverse direction. Labor would also flow from MACRO to TIMES,

but here a simplification is used, namely thatréq@esentation of labor is purely

exogenous in both subodels. Thus, TIMESIACRO is not suitable for analyzing the
impact of policies on labor, or on taxation, etc.

ENERGYCOST

AGGREGATE |- -.-.-.-.-.-.-.-.-|  PRODUCTION CONS UMPTION
ENERGY MACRO * >
INVE§TMENTS
LABOR NEW CAPITAL

Figure12.1 Energy, Labor, and Monetary flows between E®&/&and MACRO

We now turn to the mathematical description of the above, starting with the MACRO
portion of the hybrid model.
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12.2.1 Formulation of the MACRO model

We start our description of the hybrid model by stating the MACRO equatidhs) b
(12-6)

dreg+dy
™1 | 2
Max # dfact 1In(C,) + dfact.., .dfactcuz:fr".ﬁ0|T 2 1In(C.)
t=1 1" dfactcury ™ 2 (12-1)
Y, =G +INV, +EC (12-2)
Y, :%lkI(Kr"pVi' (|t(1*kpv9-’ +) bdm(DEM_M':dm;F/]/.
& dm # (12‘3)
di+dpy
,=1 and I, =I!(@+growy) 2 (12-4)
1
K., =tsry, 1K, + E(dt Itsrv!INV, +d,., 1INV, ) (125)
K, “(growy +depn)! INV, (12-6)

with the modelariables:
C,: annual consumption in periagd

DEM_M,,.: annual energy demand in MACRO for commoditgin periodt,

t,dm”

Y,: annual production in periagl
INV,: annual investments in peridd
EC.: amual energy costs in periad
K,: total capital in period

and theexogenous parameters
akl: production function constant,
b, : demand coefficient,

dm”

%9The concretémplementation in the TIMESMACRO model differs in some points, e.g. the consumption
variable in the utility function is substituted by equationsZ)2nd (123).
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d,: duration of period in years,

depr. depreciation rate,

dfact: utility discount factor,

dfactcur: annual discount rate,

growy, - growth rate in periodl

kpvs capital value share,

I, annual labor index in peridd

! substitution constant,

T: period index of the last period,

tsry: capital survival factor between two periods.

The objective functioifl2-1) of the MACRO model is the maximization of the
summation of discounted utility at each period. The utility is defined as the logarithm of
consumptionC, of the households. A logarithmic utility function embodies a decreasing

margiral utility property (Manne, 1977). Note that the discount fadfactfor period t

must take into account both the length of the period and the time elapsed between the
period's start and the base year. Note also lieatiscount factoof the last period has a
larger impact since it is assumed to apply to the infinite time horizon after the last model
period (alternatively, the user may decide to limit the number of years in the last term, in
those cases where it is deemed importanbider less weight to the indefinite future).

The national accounting equatidt?{2) simply states that national productigmmust
cover national consumptidd , plus investmentB\V;, plus energy costsC.

The productiorfunction (L2-3) representthe entire economy. i$ a nested, constant

elasticity of substitution (CES) function with thieeeinput factors capital, labor and

energy. The production input factors labpand capitalk, form an aggregate, ivhich

both can be substited by each other representedari@obbDouglas function. Then, the
aggregate of the energy services and the aggregate of capital and labor can substitute each
other.Note that labor is not endogenous in MACB@;js specified ewgenously by the

user providedéabor growth ratgyrowy, .

The energy in term inl@-3) is a weighted sum of engse demands in all sectahs of
the economyDEM_M ¢m, raised to the powér We defer the definition of these
quantities unt the next subsection.
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The lower the value of the elasticity of substitution the closer is the linkage between
economic growth and increase in energy demand. For homogenous production functions
with constanteturns toscalé® the substitution constartin (12-3) isdirectly linked

with the usetdefinedelasticity of substitution by the expressiori =1#1// .

The capital value sharepvs describes the share of capital in the sum of all production
factors andnust bespecified by the user. The parameadd is the level constant of the
production function. The parameteskl and b,  of the production are determined based
on the results from a TIMES model run without the MACRO module.

The capital dynamicequation {2-5) describes the capital stock in the current period
K,,, based on the capital stock in the previous period and on investments made in the

current and the previous period. Depreciation léadsreduction of the capital. This
effect is taken into account by the capital survival fasief, which describes the share

of the capital or investment in peribthat still exists in perioth1. It is derived from the
depreciation ratelepr using the following expression:

(dyg +dy)

tsry =(1! depr) 2 (12-7)

Expression12-7) calculates the capital survival factor for a period of years beginning
with the end of the middle yean and ending with the end of the yeay,,. The

+
duration between these two middle years equals the dupg&ibzni. Then, a mean

investment in periotlis calculated by weighting the investments$ amdt+1 with the
respective period duration/2(d, !tsrv! INV, +d,,, 1INV, ).

For the first period it is assumed that dapital stock growsvith the laborgrowth rate of
the first periodgrowy,. Thus, the investment has to cover this growth rate plus the
depreciation of capital. Since the initial capital stock is given and the depreciation and

growth rates are exogenous, the investment ifisteperiod can be calculated
beforehand:

0 A production function is called homogenous of degtéemultiplying all production fators by a

constant scalar lead5 to an increase of the function By . If r= 1, the production function is called
linearly homogenous and leads to constant returns to scale.
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INV, = K, !(depr+ growy,) (12-8)

Since the model horizon is finite, one has to ensure that the capital stock is not fully
exhausted@which would maximize the utility in the model horizpmherefore a terminal
condition (L2-6) isadded, whiclguaranteethat after the end of the model horizon a
capital stock for the following generations exists. It is assumed that the capital stock
beyond the end of horizagrows with the labor growth ratgowy; . This is coherent

with the last term of the utility function.

12.2.2 Linking MACRO with TIMES

TIMES is represented via the following condensed LP

o !Z!"#$%_ s 11, (1)

|
s.t. Prrromg I e

where

x is the vector of TIMESariables

"#$ 11, (1) is the annual undiscounted cost TIMES expression

dfact is the discount factor for periad

equationgA) express the satisfaction of demands in TIMES (and thusedefine
DEM_Tymvariables), and

¥ equationgB) is the set of all other TIMES constraints

K K K K

MACRO and TIMES are hard linked via two sets of variables: the energy variables
DEM_Tyms and the period energy coS§©ST T

The aggregate energy input into MACRO (sgeation {2-3)), is slightly different from
the TIMES variables defined above. In the linked model, each&kh Mis obtained
by further applying a factogeeifac, , as shown in equatiori2-9).

t,dm

DEM T

t.dm

= aeeifac, ,,, " DEM M, ,, (12-9)
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Indeed, he energy demand in the TIMES model can be lower than the energy
requirement of the MACRO model duedemand reductions, which are caused by
autonomous eneygefficiency improvements and comeaddition to thoseaptured in

the energy sector of the TIMES modEhe autonomous energy efficiency improvement
factor aeeifac, ,, is determined in a calibration procedure describgdchnical note

(Documentation of the TIMEMACRO modeQ) which also discusses the weighing
coefficients, .

The other link consists in accounting for the monetary i@y equal to the
expenditures made in the energy sector. Precielys equal to the anal
undiscounteenergy system cost of the TIMES mod&hST_7], (as used in the TIMES
objective function), augmented with an additional term as shown in equbZdn)

1 cstiny, 5
COST T + —qfacE L. XCAP, = EC,
2 < expf, - capfy, (12-10)

with

XCAPF,,: portion of the capacity expansion for technolqgy periodt that is
penalized. Constrainip-11) belowstates that it is the portion exceeding a
predefined tolerable expansion rajgf,

EC.: costs for the productioiactor energy in the MACRO model,

gfac: trigger to activate penalty term (O for turnioff penalty, 1 for using
penalty term),

cstiny ,: specificannualized investment costs of technolpgy periodt,

capfy,:  maximum level of capacity for technology

expf: tolerable expansion between two periods.

Just like in the pure MACRO model, thaeadratic penalty term added on the left hand
side of Eqn. (113¥erves tslow down the penetratiasf technologiesThis term plays a
somewhat similar role as the growth constraints do in the-siané TIMES modelThe
variable XCAR , is the amount of capacity exceeding a predefined expansion level

expressed by the expansion factsuipf and is determined by the following equation:

VAR_CAP

t+1,p

* (1+expf)!VAR_CAR  + XCAR, (12-11)
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with:

VAR_CAR,: total installed capacity of technologyn periodt.

As long as the total installed capacity in petied is below (1+expf)!CAR ) no
penalty costs are applied. For the capacity am{@#R,, , exceeding this tolerated

capacity level penalty costs are added to the regular costs of the TIMES model in
Equatio (12-10).

The quadratic term in Eqfil1) introduces a large number of nonlinear terms (one for

each technology and period) that may constitute a considerable computational burden for
large models. These constraints are therefore replaced in the current implementation of
TIMES, by linear piee-wise approximations in a way quite similar to what was done to
linearize the surplus in chaptr

12.2.3 A brief comment

In spite of the linearization of the penalty terms in equati@l(), TIMES-Macro still
contains nodinearities: its objective functiois a concave function, a good property

when maximizing, but there are T nonlinear, non convex constraints as per egL&tion (

3) that introduce a non trivial computational obstacle to large size instances of the model.

Although not discussed here, ttaibration of the TIMESMACRO model is an

exceedingly important task, since the model must agree with the initial state of the
economy in the dimensions of labor, capital, and the links between the energy sector and
the economy at large. Fuller detailsaalibration are provided ithe abovementioned
technical note.

Overall, the experience with TIMEBACRO has been good, with sizable model
instances solved in reasonable time. But the modeler would benefit from carefully
weighing the limitation of modedize imposed by the ndmear nature of TIMES
MACRO, against the advantage of using a (single sector) general equilibrium model.
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12.3The multi-regional TIMES-MACRO model (MSA)

In this section, we only sketch the generalization of TIMESCRO to a multiregional
setting. Full details, including the important calibration step and other implementation
issues, appear technical note OTIMEBlacro: Decomposition into Hardinked LP

and NLP ProblemsO

12.3.1 Theoretical background

In a multiregional setting, interegional trade introduces an important new complication

in the calculation of the equilibriuth Indeed, the fact that the utility function used in the
MACRO module is highly nokinear also means that the global utility is not equal to the
sum of the national utilities. Also, it would be impractical and conceptually wrong to
define a single consumption function for the entire set of regions, since the calibration of
the model maynly be done using national statistics, and furthermore, there may be large
differences in the parameters of each region's production function, etc.

It follows from the above that it is not possible to use a single optimization step to
calculate the glodd equilibrium. Instead, one must resort to more elaborate approaches in
order to compute what is termed a Paxgttimal solution to the equilibrium problem,

I.e. a solution where the utility of any region may not be improved without deteriorating
the utlity of some other region(s).

Such a situation has been studied in the economics literature, starting with the seminal
paper by Negishi (1960) that established the existence of equilibria that are Pareto
optimal in the Welfare functions. Manne (B@pplied the theory to the MACRO

model, and Rutherford (1992) proposed a decompaosition algorithm that makes the
equilibrium computation more tractable. The Rutherford algorithm is used in the FIMES
MACRO model. An interesting review of the applications of Nadiskory to integrated
assessment models appeared in Stanton (2010).

12.3.2 A sketch of the algorithm to solve TIMHBACRO-MSA

Rutherford's procedure is an iterative decomposition algorithm. Each iteration has two
steps. The first step optimizes a large TIMBSdnd the second step optimizes a stand

“1 Of course, ifno trade between the regis is assumed, the global equilibrium amounts to a series of
independent national equilibria, which may be calculated by the single region TVMMERO.
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alonereducednonlinear program which is an alteration of MACRO, and is named
MACRO-MSA. These two steps are repeated until convergence occurs.

Because the two steps must be solved repeatedly, the iterative procedure is
computationally demanding; furthermore, it is established that the speed of convergence
is dependent upon the number of trade variables that link the regions. For this and other
reasons, the trade between regions is limited to a single commodity, namehZaaire
expressedn monetary units. The numZrald X, ; affects the national account equation
(12-2) of each region, as follows:

Yr,t :Cr,t + INVr,t + ECI’,t + NTXI’,t

and is subject to the conservation constrdintNTX , =0 ! {t},

r

which insures that trade is globally balanced.

First stepat each iteration, the first step is the resolution of TIMES usinegtastic
demands provided by the previous solutiothef nonlinear program (except at iteration
1, where demands are either exogenously provided or generated by *HIMES

Second stepnce the TIMES solution is obtained, it is used to form a quadratic
expression representing an approximation of the aggregergy cost, to be used in
MACRO-MSA. Defining this approximation is the crux of Rutherford decomposition
idea. It replaces the entire TIMES model, thus greatly simplifying the resolution of Step
2. The global objective function of MACRMSA is a weighed sum (over all regions) of
the regional MACRO welfare functions, where the weights are the Negishi weights for
each region. The thus modified global objective function is maximized. Then, a
convergence criterion is checked. If convergence is not obséheedew demands are

fed into TIMES and a new iteration is started. The Negishi weights are also updated at
each iteration, leading to a new version of the objective, until the algorithm converges to
the Paretaptimal equilibrium.

The adaptation of Rherford algorithm to TIMESMACRO was formalized by Kypreos
(2006) and implemented by Kypreos and Letitathe abowenentionedechnicalnote

“At may be desirablealthough not requiretd use norzero demand elasticities at the very fitstation.
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13 Appendix A: History and comparison of MARKAL and
TIMES

13.1A brief history of TIMES™ and MARKAL

The TIMES {ThelntegratedVarkatEfomSystem) and the MARKALNARKet

AL location) models have a common history beginning in the 19H&gsa formal

decision of the International Energy Agency (IH&d to the creation of a commawol

for analyzing energy systems, to barsd by the participating OECD natioMARKAL
became a reality by the year 1980 and became a common tool of the members of the
Energy Technology Systems Analysis Programme (ETSAP), an IEA Implementing
Agreement (I1A).

Developmenbf the new modeling paragim was udertaken over a period of three years.
First a team of national experts from more than sixteen countries met numerous times to
define the data requimgens and mathematics that were to underpin MARKAL. Then the
actual coding and testing of the d&b formulation proceeded on two parallel tracks. One
team at Brookhaven National Laboratory (BNL) embarked on the undertaking employing
OMNI*, a specialized programming language specifically designed for optimization
modelingthatwas widely used fomodeling oil refinery operatioa The second team at

KFA Julich chose to use Fortrandodethe model. While both teams initially succeeded,
changes were quickly necess#rgtproved to benoremanageable in the BNL OMNI
version of MARKAL than inthe KFA Fortran versio®leading to the decision to

formally adopt only the BNL OMNI version for general usefull description of this

initial incarnation othemodel maybe be found in the MARKAL UserOs Guide

(Fishbone, 1983).

MARKAL was used intensively by ESAP members throughout the two decades after
1980 and beyondindergoing many improvemenihe initial mainframe OMNI version
of MARKAL was in use until 1990, when BNportedthe model to the person computer
that was jusbecoming a viable alternativét the same time, as part of this move of
MARKAL to the PC, the first model management system for MARKAL databases and
model results was developed at BNL which greatly facilitated working with MARKAL
and opened it up to a new class ofras&his PC basedsll, MUSS (MARKAL User
Support System, Goldstein, 1991), provided spreadsikedirowse/edit facilities for

“3With the kind permission of Professor Stephen Hawking
“A product of HaverlySystems Incorporatetiftp://www.haverly.com/

131



managing the input data, Reference Energy System (RES) network diagramming to
enable viewing the underlying depiction of the energy system, scenanagement and
run submission, and multiase comparison graphics that collectively greatly facititate
the ability to work effectiviy with MARKAL.

The next big step in the evolution of MARKAL/TIMES arose from BidL

collaboration with Professor ah Manne of Stanford Universitgsulting in the porting

of MARKAL to the more flexibleGeneral Algebraic Modeling System (GAMS)ill

used for TIMES todayThe driving motivation for this move to GAMS was to enable the
creation of MARKAL-MACRO (see chaptr 12), a majomodelvariant enhancement
resultingin a General Equilibrium version of the modehe drawback of MARKAL
MACRO is that it was implemeetias a nodinearprogrammingNLP) optimization
model, which limits its usability for large energy ®m models.

To overcome this shortcoming while embracing one of the main benefits arising from
MARKAL -MACRO, anothemajor model enhancement was implemented in 1995 from
a proposal made in 198§ Giancarlo Tosat1980, to allow enduse service demands

to be price sensitive, thus transforming MARKAL from a supply cost optimization model
to a system computing a supply demand partial equilibrium, named MARKRAL

(Loulou andLavigne 1996 while retaining its linear form. An alternative formulation
using na-linear programmingVIARKAL -MICRO (Van Regemorterl998 was also
implementedMany other enhancements were made in the late 1990's and early 2000's
andaredescribedn thesecond comprehensive version of MARKAL model
documentation(Loulou et al, 2004).

The development of ANSWER, the first Windows interface for MARKAL, commenced

at the Australian Bureau of Agricultural and Resource Economics (ABARE) in Canberra
in early 1996 with primary responsibility taken by tEBARE staff member Ken

Noble.By early 1998 the first production version of ANSWHBERARKAL was in use,
including bymost ETSAP Partners. In late 2003 Ken Noble retired from ABARE,
established NobiSoft Systems and became the owner of the ANSWERKAL

software, thereby ensuring its ¢omuing development and support.

By the late 1990's, the need to gather all thetexy MARKAL featuresandto create

many new ones was becoming pressing, and an international group of ETSAP researchers
was formed to create what became the TIMES modedrgéor. The main desired new

features were as follows:

¥ To allow time periods to be of unequal lengths, defined by the user;
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¥

To allow the user data to control the model structure;

To make data as independent as possible of the choice of the model (@kiads
decoupling), in particular to facilitate the recalibration of the model when the
initial period is changed, but also to avoid having to redefine the data when period
lengths are altered,;

To formally define commodity flows as new variables (as irBR®M model),

thus making it easier to model certain complex processes;

To define vintaged processtistallow input data to changeccording to the
investment year

To enable the easy creation of flexible processes, a feature that was feasible with
MARKAL only by creating multiple technologies;

To permit timeslices to be entirely flexibleith a tiered hierarchy of
year/season/week/tire-day to pemit much more robust modeling of the power
sector

To improve the representation and calculation of costisd objective functign

To formally identify trae processes in order facilitatethe creation of muki

regional models

To define storage processes that carry some commodities from orsitient®
another or from some period to anotrerd

To implementmoredynamic and intetemporal usedefined constraints

Definition and development of TIMES began in late 1,9@8ulting ina beta version in
1999, andhefirst productionversionin year 2000Qinitially used by only a small number
of ETSAP nembers. The transition from MARKAL to TIMES was slowerrtha
anticipated, mainly because ETSAP moeis already had mature MARKAL databases
that required serious time and effort todoaverted intol IMES databases.

Furthermore therevas aneed for a TINES specific model shetb managehe new
model Two data handling shells were created during the 200@8dogrivate
developers closely associated with ETSAP aitt partial support from ETSARN the
early 20000¥EDA_FE (VErsatile Data Analysig=ront Eng
(http://www.kanors.com/Index.aspndin 2008, ANSWER-TIMES (Noble-Soft

Systems, 2009Even before that backend version of VEDA (VEDA_BEKanudia
http://www.kanors.com/Index.aspad beercreated to explore and exploit the results and

create reports

Following these developmen&nd as the merits of TIMES over MARKAL became
increasingly evident, TIMES became the preferred modeling tool for m&GAET
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members, old and new, as well as for energy system recgl®@ho were not formal
ETSAP members, but were either associated with ETSAP as partners in several outreach
projects or on their own.

The first complete documentation of the TIMES model gaoewas written in 200and
made available on the ETSAP webghép://www.ieaetsap.org/web/index.agpt has
since been replaced by this documentation.

As thenumber of modéérs increased arttley gained experience with TIME®e
modelunderwent many new additions and enhancements, and the number of publications
based on TIMES rose sharply. One development started in 2000 and achieved by 2005
was the creation of the firgtorld multi-regionalTIMES model Loulou, 2007 and the
simultaneous creation of a Climate Modutedpter 7) Together, these two realizations
allowed ETSAP to participate in the Stanford Energy Modeling Forum (EMF
https://emf.stanfial.edu) and conduct global climate change analyses alongside other
modelers who were mostly using general equilibrium models. Following these
developments, several ETSAP teams created multiple versions of global TIMES.models

At the same timetber mapr new features welenplemented, some of thefoundin
MARKAL though often further advancedTHMES, such ashe Endogenous
Technological Learninpature(chapter 1}, the lumpy investment featurehapterl0),
both of whichrequired the use of mixed igfer programmingandthe multi-stage
Stochastic Programming option (chapter 8) allowing users to simulate uncertain
scenariosA particularly challenging development was to enable the computation of
general equilibria in a niti-regional setting, since doing so required a methodology
beyond simple optimizatiorclapter 12

Increasingly aJIMES benefitted from many enhancements and gained prominence in
the community of moders,andwhile some features found their way ihe MARKAL
mode| in order toprovidesimilar capabilitiego the large existing MARKAL user base,
ETSAP decided that there would be no further development of MARKAL though support
would continue to be provided to the existing usBysthe early 2010's[IMES (and
MARKAL) models were recognized as major contributors within the community of
energy and climate change researchers, and the number of outreach projects increased
tremendously.Today it is estimated that MARKAL/TIMES has been introduced to well
over 300 institutions in more than 80 countries, and is géynexisidered the

benchmark integrated energy system optimization platform available for use around the
world.
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13.2 A comparison of the TIMES and MARKAL models

This sectioncontains a poinby-point comparison ohighlights ofthe TIMES and
MARKAL models. It is of interest primarily to modelers already familiar with
MARKAL, and toprovide a sense dfieadvancements embodied in TIMEEhe
descriptions of the features given below are not detaileck shey are repeated
elsewhere in the documentatiohboth modelsRather, the function of theectionis to
guide the reader, by mentioning the features that are p@semprovedin one model
that arenotfound or only in a simplified fornm theother.

13.2.1 Similarities

The TIMES and the MARKAL models share the same basic modeling paradigm. Both
models are technology explicit, dynamic partial equilibrium models of energy nfarkets

In both cases the equilibrium is obtained by maximizing the totalusugb consumers

and suppliers via Linear Programmjivghile minimizing total discounted energy system
cost Both modelsare by default clairvoyant, that iieyoptimize over the entire

modeling horizon, though partial lo@head (or myopic) may also bmployed.The two
models also share the mudégional feature, which allows the modeler to construct
geographically integrated (even global) instantesugh in MARKAL there are no inter
regional exchange process making the representation of trade (muehgumbersome
These fundamental features were describéchapter 3 of this documentation, and

Section 1.3, PART | of the MARKAL documentation, and constitute the backbone of the
common paradigm. However, there are also significant differencestwdhaodels,

which we now outline. These differences do not affect the basic paradigm common to the
two models, but rather some of their technical features and properties.

13.2.2 TIMES features not in MARKAL
13.2.2.1Variable length time periods

MARKAL has fixed lengthtime periodswheread IMES allows the user to define

period lengths in a completely flexible way. This is a major model difference, which
indeed required a completedefinition of the mathematics of most TIMES constraints
and of the TIMES objective fution. The variable period length feature is very useful in

“4>But recall that some extensions depart from the classical equilibrium properties, see chapters 8
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two instances: first if the user wishes to use a single year as initial pguite sefufor
calibration purposes), and second when the user contemplates long horizons, where the
first few perods may be described in some detail by relatively short periods (say 5 years),
while the longer term may be regrouped into a few periods with long durations (perhaps
20 or more years).

13.2.2.2Data decoupling

This somewhat misunderstood feature does not canfditional power to TIMES, but it
greatly simplifies the maintenance of the model database and allows the user great
flexibility in modifying the new definition of the planning horizon. In TIMES all input
data are specified by the user independently tterdefinition of the time periods
employed for a particular model run. All tindependent input data are specified by the
year in which the data applies. The model then takes care of matching the data with the
periods, wherever required. If necessaryda is interpolated (or extrapolated) by the
model preprocessor code to provide data points at those time periods required for the
current model run. In addition, the user has control over the interpolation and
extrapolation of each time series.

The gewral rule of data decoupling applies also to past data: whereas in MARKAL the
user had to provide the residual capacity profiles for all existing technologies in the initial
period, and over the periods in which the capacity remains available, in TIMESethe

may provide technical and cost data at those past years when the investments actually
took place, and the model takes care of calculating how much capacity remains in the
various modeling periods. Thus, past and future data are treated essertiglgame
manner in TIMES.

One instance when the data decoupling feature immensely simplifies model management
is when the user wishes to change the initial period, and/or the lengths of the periods. In
TIMES, there is essentially nothing to do, excegtldring the dates of the new periods.

In MARKAL, such a change represents a much larger effort requiring a substantive
revision of the database.

13.2.2.3Flexible time slices and storage processes

In MARKAL, only two commodities have timslices: electricity antbw temperature
heat, with electricity having seasomaddaynight timeslices, and heat having seasonal
time-slices. In TIMES, any commodity and process may have its owngchesen time
slices. These flexible timslices are segregated into threeup®s seasonal (or monthly),
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weekly (weekday vsveekend), and daily (day/nigbt hourly), where any level may be
expanded (contracted) or omitted.

The flexible nature of the TIMES tirrslicessupportsstorage processes that Oconsume®
commodities at oneme-slice and release them at another. MARKAL only supports
night-to-day (electricity) storage.

Note that many TIMES parameters may be tshiee dependent (such as availability
factor (AF), basic efficiencyXCT_EFP), etc.

13.2.2.4Process generality

In MARKAL processes in different RES sectors are endowed with different (data and
mathematical) properties. For instance,-asd processes do not have activity variables
(activity is then equated to capacity), and resource processes have no investment
variables. INTIMES, all processshavethe same basic features, which are activated or
not solely via data specificatipwith some additional special features relevant to trade
and storage processes

13.2.2.5Flexible processes

In MARKAL processes are by definition rigidxcept for some specialized processes
which permit flexible output (such as limit refineries or pagsturbine CHPs), and thus
outputs and inputs are in fixed proportions with one another. In TIMES, the situation is
reversed, and each process startsdiggoentirely flexible, unless the user specifies
certainattributesto rigidly link inputs to outputs. This feature permits better modeling of
many reallife processes as a single technology, where MARKAL may require several
technologies (as well as dumrogmmodities) to achieve the same result. A typical
example is that of a boiler that accepts any of 3 fuels as input, but whose efficiency
depends on the fuel used. In MARKAL, to model this situation requires four processes
(one per possible fuel plus otteat carries the investment cost and other parameters),
plus one dummy fuekpresenting the output of the three Oblending® pracddMES

one process is sufficient, and no dummy fuel is required. Note also that TIMES has a
number of parameters thednlimit the input share of each fuel, whereas in MARKAL,
imposing such limits requires that several user constriaéntefined®

“%In the end thewio models use equivalent mathematical expressions to represent a flexible process.
However, TIMES reduces the userOs effort to a minimum, while MARKAL requires the user to manually
define the multiple processes, dummy fuels and user constraints.
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13.2.2.6Investment and dismantling ledéiches and costs

New TIMES parameters allow the user to model the construction phagéesarahtling

of facilities that have reached their eoidlife. These are: lead times attached to the
construction or to the dismantling of facilities, capital sést dismantling.and

surveillance costs during dismantling. Like in MARKAL, there is atsogossibility to
define flows of commodities consumed at construction time, or released at dismantling
times, thus allowing the representation of-kifgcle energy and emission accounting.

13.2.2.7Vintaged processes and adependent parameters

The variables a®ciated with user declared vintaged processes employ both the time
periodp and vintage period (in which new investments are made and associated input

data is obtained). The user indicates that a process is to be modeled as a vintaged process
by using aspecial vintage parameter. Note that in MARKAL vintaging is possible only

for endusedevices (for which there is no activity variabée)d only applies to the device
efficiency (and investment costhich is always vintaged by definitidor all

technol@ies)or via the definition of several replicas of a process, each replica being a
different vintage. In TIMES, the same process name is used for all vintages of the same
process’

In addition, some panaeters maye specified to have different values @cting to the

age of the process. In the current version of TIMES, these parameters include the
availability factors, the in/out flow ratios (equivalent to efficiencies), and the fixed cost
parameters only. Several other parameters could, in principteefined to be age
dependent, but such extensions have not been implemented yet.

13.2.2.8Commodity related variables

MARKAL has very few commodity related variables, namely exports/imports, and
emissions. TIMES has a large number of commeuditsited variables sh as: total
production, total consumption, but al@nd most importantlygpecific variables
representing the flows of commodities entering or exiting each processe Variables

“The repreentation of vintage as a separate index helps eliminate a common confusion that existed in
MARKAL, namely the confusion ofintagewith theageof a process. For instance, if the user defines in
MARKAL an annual O&M codbor a carequal to 10 in 2005 arwhly 8 in 2010, the decrease would not

only apply to cars purchased in 2010, but also to cars purchased in 2005 and earlier when they reach the
2010 period.
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providethe usemwith many OhandlesOdefine boundsnd coss on commoity flows,

and foster easier setup of user constraints looking to impose shares across technology
groups (e.g., renewable electricity generation targets, maximum share of demand that can
be met by a (set of) devices)

13.2.2.9More accurate and realistidepiction of investment cost payments

In MARKAL each investment is assumed to be paid in its entirety at the beginning of
thetime periodin which it becomes availablén TIMES the timing of investment

payments is quite detailed. For large facilities.(a.guclear plant), capital is

progressively laid out in yearly increments over the facilityOs construction time, and
furthermore, the payment of each increment is made in installments spread over the
economic life(lwhich may differ from the technical lifiene) of afacility. For small
processes (e.g. a car) the capacity expansion is assumed to occur regularly each year
rather than in one large lump, and the payments are therefore also spread over time.
Furthermore, when a time period is quite long (i.egkr that the life of the investment),
TIMES has an automatic mechanism to repeat the investment more than once over the
period. These features allow for a much smoother (and more realistic) representation of
the stream of capitalutlays in TIMES than iMARKAL.

Moreover, in TIMES all discount rates can be defined to be-diepeendent, whereas in
MARKAL both the general and technologpecific discount rates are constant over time.

13.2.2.10 StochastidProgramming

Both MARKAL and TIMES support stochasficogramning (SP,Chapter 8) as a means
for examining uncertainty and formulating hedging strategies to deal with same. In
MARKAL only 2-stageSPwas implementedind thughe resolution of the uncertainty
could only occur abne particulatime period whereas infIMES uncertaintynay be
resolved progressively differentsuccessivgeriods (e.g., mitigation levek

one period and demarelel atanother).

13.2.2.11 Climatemodule
TIMES possesses a set of variables and equations that endogenize the concentration of
CO,, CH4, and N20and also calculate the radiative forcing and global temperature

changsresulting from GHG emissions and accumulation here. This new feature is
described irChapter 7.
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14 Appendix B: Linear Programming complements

This section is not strictlgeeded for a basic understanding of the TIMES model and may

be skipped a first reading. However, it provides additional insight into the

microeconomics of the TIMES equilibrium. In particular, it contains a review of the
theoretical foundation of Linearégramming and Duality Theory. This knowledge may

help the user to better understand the central role shadow prices and reduced costs play in
the economics of the TIMES model. More complete treatments of Linear Programming

and Duality Theory may be found several standard textbooks such asitzh¢1983) or

Hillier and Lieberman (1990 and subsequent editions). Samuelson and Nordhaus (1977)
contains a treatment of micexonomics based on mathematical programming.

14.1A brief primer on Linear Programming andDuality Theory
14.1.1 Basic definitions

In this subsection, the supersctifpollowing a vector or matrix represents the transpose
of that vector or matrix. A Linear Program may always be represented as the following
Primal Problemin canonical form:

Max ¢x (14-1)
st.  Ax(b (14-2)
X &0 (14-3)

wherex is a vector oflecision variablesc'x is a linear function representing thisjective
to maximize, and\x ' b is a set of inequalitgonstraints Assume that the LP has a finite
optimal solutionx*.

Theneach decision variablect | falls into one of three categories; may be:

¥ equal to its lower bound (as defined in a constraint), or
¥ equal to its upper bound, or
¥ strictly between the twodunds.

In the last case, the variab{;is calledbasic Otherwise it ision-basic

140



For each primal problem, there correspon@aial problemderived as follows:

Min b'y (14-4)
st. Aly)c (14-5)
y)O0 (14-6)

Note that the number of dual variables equals the number of constraints in the primal
problem. In fact, each dual varialiemay be assigned to its corresponding primal
constraint, which we represent & ' bi, whereA is thei™ row of matrixA.

14.1.2 Dudity Theory

Duallity theory consists mainly of three theoréfnweak duality, sbng duality, and
complementar slackness.

Weak Duality Theorem
If xis any feasible solution to the primal problem gl any feasible solution to the
dual, then the following inequality holds:

cX by (14-7)

The weak duality theorem states that the value of a feasible dual objective is never
smaller than the value of a feasible primal objective. The differertaebe the two is
called theduality gapfor the pair of feasible primal and dual soluti¢ry).

Strong duality theorem
If the primal problem hasfanite, optimalsolutionx*, then so does the dual probleyi)(
and both problems have the same optingcive value (their duality gap is zero):

cx* = bly* (14-8)

Note that the optimal values of the dual variables are also callstiddew pricesf the
primal constraints.

“8 Their proofs may be found in the textbooks on Linear Programming already referenced.
141



Complementary Slackness theorem
At an optimal solution to an LP prah:
¥ If y*iis> 0 then the corresponding primal constraint is satisfied at equality (i.e.
Ax*=b;and the™ primal constraint is calletight. Conversely, if thé" primal
constraint islack(not tight), thery*; =0,
¥ If x*jis basic then the corresponding dual constraint is satisfied at equality, (i.e.
A'*y =c;, whereA\; is thej" row of A, i.e. thej"™ column ofA. Conversely, if the
j™ dual constraint is slack, thea; is equal to one of its bounds.

Remark Note however thaa primal constraint may have zero slack and yet have a dual
equal to 0. And, a primal variable may be non basic (i.e. be equal to one of its bounds),
and yet the corresponding dual slack be still equal to 0. These situations are different
cases of the soalled degeneracy of the LP. They often occur when constraints are over
specified (a trivial case occurs if a constraint is repeated twice in the LP)

14.2 Sensitivity analysis and the economic interpretation of dual variables

It may be shown that if th& RHSb; of the primal is changed by an infinitesimal amount
d, and if the primal LP is solved again, then its new optimal objective value is equal to
the old optimal value plus the quantyyxd, wherey;* is the optimal dual variable value

Looselyspeaking®, one may say that the partial derivative of the optimal primal
objective functionOs value with respect to the RHS of'therhal constraint is equal to
the optimal shadow price of that constraint.

14.2.1 Economic nterpretation of thelual variables

If the primal problem consists of maximizing the surplus (objective functigrby
choosing an activity vectot, subject to upper limits on several resourcestithector)
then:

¥ Eachg; coefficient of the dual problem matri&, thenrepresentshe
consumption of resourd® by activity x;;
¥ The optimal dual variable valyg;is the unit price of resourgeand

9 Strictly speaking, the partial derivative may not exist for some values of the RHS, and may then be
replaced by a directional derivative (see Rockafellar 1970).
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¥ The total optimal surplus derived from the optimal activity veottris equal to
the total value of all resourcds,priced at the aimal dual valueg* (strong
duality theorem).

Furthermore, each dual constraijty& g has an important economic interpretation.
Based on the Complementary Slackness theorem, if an LP sottii®optimal, then for
eachx*; that is not equal to its upper or lower bound (i.e. each basic vaxighl¢here
corresponds tight dual constraing*AQ= ¢;, which means that the revenue coefficignt
must be exactly equal to the cost of purchasing the resources needed te prasunit
of x; In economistsO ternmarginal cost equals marginal revenue, and both are equal to
the market price of* ;. If a variable is not basic, then by definition it is equal to its
lower bound or to its upper bound. In both cases, the wahtec; need not be equal to
the cost of the required resources. The technology is then eitheomypetitive (if it is

at its lower bound) or it is super competitive and makes a surplus (if it is at its upper
bound).

Example The optimal dual value atthed to the balance constraint of commodlity
represents the change in objective function value resulting from one additional unit of the
commodity. This is precisely the internal unit price of that commodity.

14.2.2 Reduced surplus and reducexsic

In a maxinization problem, the differengg¢AQ- ¢ is called theeduced surplusf
technologyj, and is available from the solution of a TIMES probléns a useful
indicator of the competitiveness of a technology, as follows:

¥ If x*jis at its lower bound, stunit revenug; is lessthan the resource cost (i.e. its
reduced surplus is positive). The technology is not competitive (and stays at its
lower bound in the equilibrium);

¥ |If x*;is at its upper bound, revenges larger than the cost of resources (i.e. its
reduced surplus is negative). The technology is super competitive and produces a
surplus; and

¥ If x*;is basic, its reduced surplus is equal to 0. The technology is competitive but
does not produce a surplus.

We nowrestate the above summary in the case of a Linear Program that minimizes cost
subject to constraints:
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Min ¢'x
st. Ax)b
x)0

In a minimization problem (such as the usual formulation of TIMES), the diffecgnce
y*AQis called theeduced cosbf technologyj. The following holds:

¥ If x*;is at its lower bound, its unit cost is larger than the value created (i.e. its
reduced cost is positive). The technology is not competitive (and stays at its
lower bound in thequilibrium);

¥ if x*;is at its upper bound, its cagts lessthan the value created (i.e. its
reduced cost is negative). The technology is super competitive and produces a
profit; and

¥ if x*jis basic, its reduced cost is equal to 0. The technologynpetitive but
does not produce a profit

The reduced costs/surpluses may thus be used to rank all technohmfjielsng those
that are not selected by the model.
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