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General Introduction to the TIMES Documentation 
 
This documentation is composed of five Parts.  
 
Part I  provides a general description of the TIMES paradigm, with emphasis on the 
modelÕs general structure and its economic significance. Part I also includes a simplified 
mathematical formulation of TIMES, a chapter comparing it to the MARKAL model, 
pointing to similarities and differences, and chapters describing new model options. 
 
Part II  constitutes a comprehensive reference manual intended for the technically 
minded modeler or programmer looking for an in-depth understanding of the complete 
model details, in particular the relationship between the input data and the model 
mathematics, or contemplating making changes to the modelÕs equations. Part II includes 
a full description of the sets, attributes, variables, and equations of the TIMES model. 
 
Part III  describes the organization of the TIMES modeling environment and the GAMS 
control statements required to run the TIMES model. GAMS is a modeling language that 
translates a TIMES database into the Linear Programming matrix, and then submits this 
LP to an optimizer and generates the result files. Part III describes how the routines 
comprising the TIMES source code guide the model through compilation, execution, 
solve, and reporting; the files produced by the run process and their use; and the various 
switches that control the execution of the TIMES code according to the model instance, 
formulation options, and run options selected by the user. It also includes a section on 
identifying and resolving errors that may occur during the run process.  
 
Part IV  provides a step-by-step introduction to building a TIMES model in the VEDA-
Front End (VEDA-FE) model management software. It first offers an orientation to the 
basic features of VEDA-FE, including software layout, data files and tables, and model 
management features. It then describes in detail twelve Demo models (available for 
download from the ETSAP website) that progressively introduce VEDA-TIMES 
principles and modeling techniques. 
 
Part V describes the VEDA Back-End (VEDA-BE) software, which is widely used for 
analyzing results from TIMES models. It provides a complete guide to using VEDA-BE, 
including how to get started, import model results, create and view tables, create and 
modify user sets, and step through results in the model Reference Energy System. It also 
describes advanced features and provides suggestions for best practices. 
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PART I: TIMES CONCEPTS AND 
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Organization of PART I 
 
Part I comprises five divisions, each containing a number of chapters: 
 

¥ Chapters 1 and 2 provide a general overview of the representation in TIMES of 
the Reference Energy System (RES) of a typical region or country, focusing on its 
basic elements, namely technologies and commodities. 
 

¥ Chapters 3 to 7 describe the core TIMES model generator, i.e. the dynamic partial 
equilibrium version with perfect foresight: Chapter 3 discusses the economic 
rationale of the model, and Chapter 4 describes in more detail than chapter 3 the 
elastic demand feature and other economic and mathematical properties of the 
TIMES equilibrium.  Chapter 5 presents a streamlined representation of the 
Linear Program used by TIMES to compute the equilibrium. Chapter 6 describes 
a new TIMES feature for conducting systematic sensitivity analyses. Chapter 7 
describes the Climate Module of TIMES.  
 

¥ Chapters 8 to 11 contain descriptions of 4 extensions or variants that, if used, 
depart from the assumptions of the core model in a way that alters the nature of 
the equilibrium: Chapter 8 covers the stochastic programming variant, which no 
longer assumes perfect foresight, but rather imperfect foresight; Chapter 9 
describes the myopic use of TIMES, which violates the perfect foresight property 
and replaces it with limited foresight; Chapter 10 describes the lumpy investment 
variant where some decisions are discrete rather than continuous, and thus violate 
the convexity property; Chapter 11 describes the endogenous technology learning 
extension, also involving non-convex elements. 
 

¥ Chapter 12 is devoted to two extensions that make TIMES into a General 
Equilibrium model, namely ES-MACRO and TIMES-MERGE-MACRO. 

 

¥ Chapters 13 and 14 constitute appendices that may be of interest to readers at any 
point in their use of the rest of the text. Chapter 13 provides a brief history and 
comparison of TIMES and MARKAL, the modeling framework that preceded 
TIMES. Chapter 14 provides a short review of the theoretical foundation of 
Linear Programming and the interpretation of the dual solution of a linear 
program.  
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1 Introduction to the TIMES model 
 

1.1 A brief summary 
 
TIMES (an acronym for The Integrated MARKAL-EFOM1 System) is an economic 
model generator for local, national, multi-regional, or global energy systems, which 
provides a technology-rich basis for representing energy dynamics over a multi-period 
time horizon. It is usually applied to the analysis of the entire energy sector, but may also 
be applied to study single sectors such as the electricity and district heat sector. 
Estimates of end-use energy service demands (e.g., car road travel; residential lighting; 
steam heat requirements in the paper industry; etc.) are provided by the user for each 
region to drive the reference scenario. In addition, the user provides estimates of the 
existing stocks of energy related equipment in all sectors, and the characteristics of 
available future technologies, as well as present and future sources of primary energy 
supply and their potentials.  
 
Using these as inputs, the TIMES model aims to supply energy services at minimum 
global cost (more accurately at minimum loss of total surplus) by simultaneously making 
decisions on equipment investment and operation; primary energy supply; and energy 
tradefor each region. For example, if there is an increase in residential lighting energy 
service relative to the reference scenario (perhaps due to a decline in the cost of 
residential lighting, or due to a different assumption on GDP growth), either existing 
generation equipment must be used more intensively or new Ð possibly more efficient Ð 
equipment must be installed. The choice by the model of the generation equipment (type 
and fuel) is based on the analysis of the characteristics of alternative generation 
technologies, on the economics of the energy supply, and on environmental criteria. 
TIMES is thus a vertically integrated model of the entire extended energy system.  
 
The scope of the model extends beyond purely energy-oriented issues, to the 
representation of environmental emissions, and perhaps materials, related to the energy 
system. In addition, the model is suited to the analysis of energy-environmental policies, 
which may be represented with accuracy thanks to the explicitness of the representation 
of technologies and fuels in all sectors. 
 
In TIMES Ð like in its MARKAL forebear Ð the quantities and prices of the various 
commodities are in equilibrium, i.e. their prices and quantities in each time period are 
                                                
1MARKAL (MARket ALlocation model, Fishbone et al, 1981, 1983, Berger et al. 1992) and EFOM (Van 
Voort et al, 1984) are two bottom-up energy models that inspired the structure of TIMES. 
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such that the suppliers produce exactly the quantities demanded by the consumers. This 
equilibrium has the property that the total economic surplus is maximized.  
 
 

1.2 Driving a TIMES model via scenarios 
 
The TIMES model is particularly suited to the exploration of possible energy futures 
based on contrasted scenarios. Given the long horizons that are usually simulated with 
TIMES, the scenario approach is really the only choice (whereas for the shorter term, 
econometric methods may provide useful projections). Scenarios, unlike forecasts, do not 
pre-suppose knowledge of the main drivers of the energy system. Instead, a scenario 
consists of a set of coherent assumptions about the future trajectories of these drivers, 
leading to a coherent organization of the system under study. A scenario builder must 
therefore carefully test the scenario assumptions for internal coherence, via a credible 
storyline. 
 
In TIMES, a complete scenario consists of four types of inputs: energy service demand 
curves, primary resource supply curves, a policy setting, and the descriptions of a 
complete set of technologies. We now present a few comments on each of these four 
components. 
 

1.2.1 The Demand component of a TIMES scenario 
 
In the case of the TIMES model, demand drivers (population, GDP, households, etc.) are 
obtained externally, via other models or from accepted other sources. As one example, 
several global instances of TIMES (e.g. Loulou, 2007) use the GEM-E32 to generate a set 
of coherent (national and sectoral) output growth rates in the various regions. Note that 
GEM-E3 or GEMINI-E3 themselves use other drivers as inputs, in order to derive GDP 
trajectories. These drivers consist of measures of technological progress, population, 
degree of market competitiveness, and a few other (perhaps qualitative) assumptions. For 
population and household projections, TIMES instances use the same exogenous sources 
(IPCC, Nakicenovic 2000, Moomaw and Moreira, 2001). Other approaches may be used 
to derive TIMES drivers, whether via models or other means. 
 

                                                
2European Commission, The GEM-E3 Model, General Equilibrium Model for Economy, Energy and 
Environment, https://ec.europa.eu/jrc/en/gem-e3/model. 
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For the global versions of TIMES, the main drivers are: Population, GDP, GDP per 
capita, number of households, and sectoral outputs. For sectoral TIMES models, the 
demand drivers may be different depending on the system boundaries. 
 
Once the drivers for a TIMES model are determined and quantified the construction of 
the reference demand scenario requires computing a set of energy service demands over 
the horizon. This is done by choosing elasticities of demands to their respective drivers, 
in each region, using the following general formula: 
 

ElasticityDriverDemand=  
 
As mentioned above, the demands are user provided for the reference scenario only. 
When the model is run for alternate scenarios (for instance for an emission constrained 
case, or for a set of alternate technological assumptions), it is likely that the demands will 
be affected. TIMES has the capability of estimating the response of the demands to the 
changing conditions of an alternate scenario. To do this, the model requires still another 
set of inputs, namely the assumed elasticities of the demands to their own prices. TIMES 
is then able to endogenously adjust the demands to the alternate cases without exogenous 
intervention. In fact, the TIMES model is driven not by demands but by demand curves. 
 
To summarize:  the TIMES demand scenario components consist of a set of assumptions 
on the drivers (GDP, population, households, outputs) and on the elasticities of the 
demands to the drivers and to their own prices. 
 

1.2.2 The Supply component of a TIMES scenario 
 
The second constituent of a scenario is a set of supply curves for primary energy and 
material resources. Multi-stepped supply curves are easily modeled in TIMES, each step 
representing a certain potential of the resource available at a particular cost. In some 
cases, the potential may be expressed as a cumulative potential over the model horizon 
(e.g. reserves of gas, crude oil, etc.), as a cumulative potential over the resource base (e.g. 
available areas for wind converters differentiated by velocities, available farmland for 
biocrops, roof areas for PV installations) and in others as an annual potential (e.g. 
maximum extraction rates, or for renewable resources the available wind, biomass, or 
hydro potentials). Note that the supply component also includes the identification of 
trading possibilities, where the amounts and prices of the traded commodities are 
determined endogenously (optionally within user imposed limits). 
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1.2.3 The Policy component of a TIMES scenario 
 
Insofar as some policies impact on the energy system, they become an integral part of the 
scenario definition. For instance, a reference scenario may perfectly ignore emissions of 
various pollutants, while alternate policy scenarios may enforce emission restrictions, or 
emission taxes, etc. The detailed technological nature of TIMES allows the simulation of 
a wide variety of both micro measures (e.g. technology portfolios, or targeted subsidies to 
groups of technologies), and broader policy targets (such as general carbon tax, or permit 
trading system on air contaminants). A simpler example might be a nuclear policy that 
limits the future capacity of nuclear plants. Another example might be the imposition of 
fuel taxes, or of targeted capital subsidies, etc. 
 

1.2.4 The Techno-economic component of a TIMES scenario 
 
The fourth and last constituent of a scenario is the set of technical and economic 
parameters assumed for the transformation of primary resources into energy services. In 
TIMES, these techno-economic parameters are described in the form of technologies (or 
processes) that transform some commodities into others (fuels, materials, energy services, 
emissions). In TIMES, some technologies may be user imposed and others may simply 
be available for the model to choose from. The quality of a TIMES model rests on a rich, 
well developed set of technologies, both current and future, for the model to choose from. 
The emphasis put on the technological database is one of the main distinguishing factors 
of the class of Bottom-up models, to which TIMES belongs. Other classes of models will 
tend to emphasize other aspects of the system (e.g. interactions with the rest of the 
economy) and treat the technical system in a more succinct manner via aggregate 
production functions. 
 
Remark: Two scenarios may differ in some or all of their components. For instance, the 
same demand scenario may very well lead to multiple scenarios by varying the primary 
resource potentials and/or technologies and/or policies, insofar as the alternative scenario 
assumptions do not alter the basic demand inputs (drivers and elasticities). The scenario 
builder must always be careful about the overall coherence of the various assumptions 
made on the four components of a scenario. 
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1.3 Selected scenario types 
 
The purpose of this section is to show how certain policies may be simulated in a TIMES 
model. The enormous flexibility of TIMES, especially at the technology level, allows the 
representation of almost any policy, be it at the national, sector, or subsector level. 
 
Policy 1:  Carbon tax 
 
A tax is levied on emissions of CO2 at point of source.  
 
This policy is easily represented in TIMES a) making sure that all technologies that emit 
CO2 have an emission coefficient, and then defining a tax on these emissions (see 
2.6.1.2). The policy may indicate that the tax be levied upstream for some end-use sectors 
(e.g. automobiles), in which case the emission coefficient is defined at the oil refinery 
level rather than at the level of individual car types.  
 
Policy 2: Cap-and-trade on CO2 
 
An upper limit on CO2 emissions is imposed at the national level (alternatively, separate 
upper limits are imposed at the sector level). If the model is multi-country, trade of 
emission permits is allowed between countries (and/or between sectors). The trade may 
also be upper bounded by a maximum percentage of the actual emissions, thus 
representing a form of the subsidiarity principle. 
 
This type of policy is simulated by defining upper bounds on emissions, a straightforward 
feature in TIMES (sections2.6.1.3 and 2.6.2.3). By defining total sector emissions as a 
new commodity, the sector-restricted cap is just as easily implemented. The trade of 
national emissions makes use of the standard trade variables of TIMES (section 5.2). 
 
Policy 3: Portfolio standard 
 
A sector is submitted to a lower limit on its efficiency. For instance, the electricity 
subsector using fossil fuels must have an overall efficiency of 50%3. A similar example is 
an overall lower limit on the efficiency of light road vehicles. 
 

                                                
3This standard may also be imposed on the entire electricity generation sector, in which case renewable 
electricity plants are assumed to have zero energy input. 
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This type of policy requires the definition of a new constraint that expresses that the ratio 
of electricity produced (via fossil fueled plants) over the amount of fuel used be more 
than 0.5. TIMES allows the modeller to define such new constraints via the user 
constraints (section 5.4.9). 
 
Policy 4: Subsidies for some classes of technologies 
 
The representation of this policy requires defining a capital subsidy for every new 
capacity of a class of technologies. This is quite straightforward in TIMES using the 
subsidy parameters (section 2.6.1.2.) 
 
A more elaborate form of the subsidy might be to first levy an emission tax, and then use 
the proceeds of the tax to subsidize low-emitting and non-emitting technologies. Such a 
compound policy requires several sequential runs of TIMES, the first run establishing the 
proceeds of the carbon tax, followed by subsequent runs that distribute the proceeds 
among the targeted technologies. Several passes of these two runs may well be required 
in order to balance exactly the proceeds of the tax and the use of them as subsidies. 
 
Assessing the robustness of policies 
 
An important aspect of any policy is whether it will stay effective under various 
conditions. Examples of such conditions are oil prices, climate parameters, availability of 
certain resources, key technology costs or efficiency, etc. A policy that remains effective 
under a range of values for such conditions, is said to be robust. In TIMES, robustness 
may be assessed using a variety of features, ranging from sensitivity analysis (chapter 6) 
to Stochastic Programming (chapter 8). 
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2 The basic structure of the core TIMES model 
 

2.1 The TIMES economy 
 
The TIMES energy economy is made up of producers and consumers of commodities 
such as energy carriers, materials, energy services, and emissions. By default, TIMES 
assumes competitive markets for all commodities, unless the modeler voluntarily imposes 
regulatory or other constraints on some parts of the energy system, in which case the 
equilibrium is (partially) regulated. The result is a supply-demand equilibrium that 
maximizes the net total surplus (i.e. the sum of producersÕ and consumersÕ surpluses) as 
fully discussed in chapters 3 and 4. TIMES may however depart from perfectly 
competitive market assumptions by the introduction of user-defined explicit constraints, 
such as limits to technological penetration, constraints on emissions, exogenous oil price, 
etc. Market imperfections can also be introduced in the form of taxes, subsidies and 
hurdle rates. 
 
While computing the equilibrium, a TIMES run configures the energy system of a set of 
regions, over a certain time horizon, in such a way as to minimize the net total cost (or 
equivalently maximize the net total surplus) of the system, while satisfying a number of 
constraints. TIMES is run in a dynamic manner, which is to say that all investment 
decisions are made in each period with full knowledge of future events. The model is said 
to have perfect foresight4 (or to be clairvoyant).  The next subsection describes in detail 
the time dimension of the model. 
 
 

2.2 Time horizon 
 
The time horizon is divided into a user-chosen number of time-periods, each period 
containing a (possibly different) number of years.   
In the standard version of TIMES each year in a given period is considered identical, 
except for the cost objective function which differentiates between payments in each year 
of a period. For all other quantities (capacities, commodity flows, operating levels, etc.) 
any model input or output related to period t applies to each of the years in that period, 

                                                
4 However, there are TIMES variants Ð discussed in chapters 8 to 12, that depart significantly from these 
assumptions 



16 
 

with the exception of investment variables, which are usually made only once in a 
period5. 
 
Another version of TIMES is available, in which the TIMES variables (capacities and 
flows) are defined at some year in the midst of each period (called milestone year), and 
are assumed to evolve linearly between the successive milestone years. This option 
emulates that of the EFOM model and is discussed in section 5.5. 
 
The initial period is usually considered a past period, over which the model has no 
freedom, and for which the quantities of interest are all fixed by the user at their historical 
values. It is often advisable to choose an initial period consisting of a single year, in order 
to facilitate calibration to standard energy statistics. Calibration to the initial period is one 
of the more important tasks required when setting up a TIMES model. The main 
variables to be calibrated are: the capacities and operating levels of all technologies, as 
well as the extracted, exported, imported, produced, and consumed quantities for all 
energy carriers, and the emissions if modeled.  
 
In TIMES, years preceding the first period also play a role. Although no explicit variables 
are defined for these years, data may be provided by the modeler on past investments. 
Note carefully that the specification of past investments influences not only the initial 
periodÕs calibration, but also partially determines the modelÕs behavior over several 
future periods, since the past investments provide residual capacity in several years 
within the modeling horizon proper. 
 
In addition to time-periods (which may be of variable length), there are time divisions 
within a year, also called time-slices, which may be defined at will by the user (see Figure 
2.1). For instance, the user may want to define seasons, portions of the day/night, and/or 
weekdays/weekends. Time-slices are especially important whenever the mode and cost of 
production of an energy carrier at different times of the year are significantly different. 
This is the case for instance when the some energy commodity is expensive to store so 
that the matching of production and consumption of that commodity is itself an issue to 
be resolved by the model. The production technologies for the commodity may 
themselves have different characteristics depending on the time of year (e.g. wind 
turbines or run-of-the-river hydro plants). In such cases, the matching of supply and 
demand requires that the activities of the technologies producing and consuming the 

                                                
5 There are exceptional cases when an investment must be repeated more than once in a period, namely 
when the period is so long that it exceeds the technical life of the investment. These cases are described in 
detail in section 6.2.2 of PART II. 
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commodity be tracked for each time slice. Examples of commodities requiring time-
slicing may include electricity, district heat, natural gas, industrial steam, and hydrogen.  
An additional reason for defining sub yearly time slices is the requirement of an 
expensive infrastructure whose capacity should be sufficient to allow the peak demand 
for the commodity to be satisfied. Technologies that store a commodity in one time slice, 
at a cost, for discharge in another time slice, may also be defined and modeled. 
The net result of these conditions is that the deployment in time of the various production 
technologies may be very different in different time slices, and furthermore that specific 
investment decisions will be taken to insure adequate reserve capacity at peak.  
 

 
Figure 2.1: Example of a time-slice tree 
 
 

2.3 Decoupling of data and model horizon 
 
In TIMES, special efforts have been made to decouple the specification of data from the 
definition of the time periods for which a model is run. Two TIMES features facilitate 
this decoupling.  
 
First, the fact that investments made in past years are recognized by TIMES makes it 
much easier to modify the choice of the initial and subsequent periods without major 
revisions of the database. 
 
Second, the specification of process and demand input data in TIMES is made by 
specifying the calendar years when the data apply, irrespective of how the model time 
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periods have been defined. The model then takes care of interpolating and extrapolating 
the data for the periods chosen by the modeler for a particular model run. TIMES offers a 
particularly rich range of interpolation/extrapolation modes adapted to each type of data 
and freely overridden by the user. Section 3.1.1of Part II discusses this feature. 
 
These two features combine to make a change in the definition of periods quite easy and 
error-free. For instance, if a modeler decides to change the initial year from 2010 to 2015, 
and perhaps change the number and durations of all other periods as well, only one type 
of data change is needed, namely to define the investments made from 2011 to 2015 as 
past investments. All other data specifications need not be altered6. This feature 
represents a great simplification of the modelerÕs work. In particular, it enables the user 
to define time periods that have varying lengths, without changing the input data. 

 
 
2.4 The components of a Reference Energy System (RES): processes, 

commodities, flows 
 
The TIMES energy economy consists of three types of entities: 
 

!  Technologies (also called processes) are representations of physical plants, 
vehicles, or other devices that transform some commodities into other 
commodities. They may be primary sources of commodities (e.g. mining 
processes, import processes), or transformation activities such as conversion 
plants that produce electricity, energy-processing plants such as refineries, or end-
use demand devices such as cars and heating systems, that transform energy into a 
demand service; 

!  Commodities consisting of energy carriers, energy services, materials, monetary 
flows, and emissions. A commodity is produced by one or more processes and/or 
consumed by other processes; and 

!  Commodity flows are the links between processes and commodities. A flow is of 
the same nature as a commodity but is attached to a particular process, and 
represents one input or one output of that process. For instance, electricity 
produced by wind turbine type A at period p, time-slice s, in region r, is a 
commodity flow.  

 

                                                
6 However, if the horizon has been lengthened beyond the years already covered by the data, additional data 
for the new years at the end of the horizon must of course be provided.  
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2.4.1 The RES 
 

It is helpful to picture the relationships among these various entities using a network 
diagram, referred to as a Reference Energy System (RES). In a TIMES RES, processes 
are represented as boxes and commodities as vertical lines. Commodity flows are 
represented as links between process boxes and commodity lines. 
 
Figure 2.2 depicts a small portion of a hypothetical RES containing a single energy 
service demand, namely residential space heating. There are three end-use space heating 
technologies using the gas, electricity, and heating oil energy carriers (commodities), 
respectively. These energy carriers in turn are produced by other technologies, 
represented in the diagram by one gas plant, three electricity-generating plants (gas fired, 
coal fired, oil fired), and one oil refinery.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2. Partial view of a Reference Energy System (links are oriented left to right) 
 
To complete the production chain on the primary energy side, the diagram also represents 
an extraction source for natural gas, an extraction source for coal, and two sources of 
crude oil (one extracted domestically and then transported by pipeline, and the other one 
imported).  This simple RES has a total of 13 commodities and 13 processes. Note that in 
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the RES every time a commodity enters/leaves a process (via a particular flow) its name 
is changed (e.g., wet gas becomes dry gas, crude becomes pipeline crude). This simple 
rule enables the inter-connections between the processes to be properly maintained 
throughout the network. 
 
To organize the RES, and inform the modeling system of the nature of its components, 
the various technologies, commodities, and flows may be classified into sets. Each set 
regroups components of a similar nature. The entities belonging to a set are referred to as 
members, items or elements of that set. The same item may appear in multiple technology 
or commodity sets. While the topology of the RES can be represented by a multi-
dimensional network, which maps the flow of the commodities to and from the various 
technologies, the set membership conveys the nature of the individual components and is 
often most relevant to post-processing (reporting) rather than influencing the model 
structure itself. However, the TIMES commodities are still classified into several Major 
Groups. There are five such groups: energy carriers, materials, energy services, 
emissions, and monetary flows. The use of these groups is essential in the definition of 
some TIMES constraints, as discussed in chapter 5. 
 

2.4.2 Three classes of processes 
 
We now give a brief overview of three classes of processes that need to be distinguished: 
Processes are general processes, storage processes, and inter-regional trading processes 
(also called inter-regional exchange processes). The latter two classes need to be 
distinguished from general processes due to their special function requiring special rules 
and sometimes a different set of indices. 
 
2.4.2.1 General processes 
 
In TIMES most processes are endowed with essentially the same attributes (with the 
exceptions of storage and inter-regional exchange processes, see below), and unless the 
user decides otherwise (e.g. by providing values for some attributes and ignoring others), 
they have the same variables attached to them, and must obey similar constraints. 
Therefore, the differentiation between the various species of processes (or commodities) 
is made through data specification only, thus eliminating the need to define specialized 
membership sets, unless desired for processing results. Most of the TIMES features (e.g. 
sub-annual time-slice resolution, vintaging) are available for all processes and the 
modeler chooses the features being assigned to a particular process by specifying a 
corresponding indicator set (e.g. PRC_TSL, PRC_VINT). 
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A general process receives one or more commodity inputs (inflows) and produces one or 
more commodity outputs (outflows) in the same time-slice, period, and region.  
As already mentioned, two classes of process do not follow these rules and deserve 
separate descriptions, namely storage processes and inter-regional exchange processes. 
 
2.4.2.2 Storage processes (class STG) 
 
This advanced feature of TIMES allows the modeller to represent very intricate storage 
activities from real life energy systems. Storage processes are used to store a commodity 
either between periods or between time-slices in the same period. A process p is specified 
to be an inter-period storage (IPS) process for commodity c, or as general time-slice 
storage (TSS). A special case of time-slice storage is a so-called night-storage device 
(NST) where the commodity for charging and the one for discharging the storage are 
different.  
 
An example of a night storage device is an electric heating technology that is charged 
during the night using electricity and produces heat during the day. Several time-slices 
may be specified as charging time-slices, the non-specified time-slices are assumed to be 
discharging time-slices. However, when the process is an end-use process that satisfies a 
service demand, the discharging occurs according to the load curve of the corresponding 
demand, and the charging is freely optimized by TIMES across time-slices. Such an 
exception for demand processes only exists if the demand is at the ANNUAL level. But if 
the demand is not ANNUAL, discharging can only occur in the non-charging time-slices. 
 
An example of general time-slice storage is a pumped storage reservoir, where electricity 
is consumed during the night to store water in a reservoir, water which is then used to 
activate a turbine and produce electricity at a different time-slice.  
 
An example of an inter-period storage process is a plant that accumulates organic refuse 
in order to produce methane some years later. 
 
Besides the commodity being stored, other (auxiliary) commodity flows are also 
permitted and may be defined in relation to the stored commodity using the FLO_FUNC 
and/or the ACT_FLO parameters. The activity of a storage process is interpreted as the 
amount of the commodity being stored in the storage process. Accordingly the capacity 
of a storage process describes the maximum commodity amount that can be kept in 
storage. 
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2.4.2.3 Inter-regional exchange processes (class IRE) 
 
Inter-regional exchange (IRE) processes are used for trading commodities between 
regions. Note that the name of the traded commodity is allowed to be different in both 
regions, depending on the chosen commodity names in both regions. There are two types 
of trade in TIMES, bi-lateral or multi-lateral. 
 
Bi-lateral trade is the most detailed way to specify trade between regions. It takes place 
between specific pairs of regions. A pair of regions together with an exchange process 
and the direction of the commodity flow is first identified, and the model ensures that 
trade through the exchange process is balanced between these two regions (the amount is 
exported from region A to region B must be imported by region B from region A, 
possibly adjusted for transportation losses). If trade should occur only in one direction 
then only that direction is provided by the proper ordinal attribute. The process capacity 
and the process related costs (e.g. activity costs, investment costs) of the exchange 
process may be described individually for both regions by specifying the corresponding 
parameters in each region. This allows for instance the investment cost of a trade process 
to be shared between regions in user chosen proportions.  
 
There are cases when it is not important to fully specify the pair of trading regions. An 
example is the trading of greenhouse gas (GHG) emission permits in a global market. In 
such cases, the multi-lateral trade option decreases the size of the model. Multi-lateral 
trade is based on the idea that a common marketplace exists for a traded commodity with 
several selling and several buying regions for the commodity (e.g. GHG emission 
permits). To model a marketplace the user must first identify (or create) one region that 
participates both in the production and consumption of the traded commodity. Then a 
single exchange process is used to link all regions with the marketplace region. Note 
however that some flexibility is lost when using multilateral trade. For instance, it is not 
possible to express transportation costs in a fully accurate manner, if such cost depends 
upon the precise pair of trading regions in a specific way. 
 
 

2.5 Data-driven model structure 
 
It is useful to distinguish between a modelÕs structure and a particular instance of its 
implementation. A modelÕs structure exemplifies its fundamental approach for 
representing a problemÑ it does not change from one implementation to the next. All 
TIMES models exploit an identical underlying structure. However, because TIMES is 



23 
 

data7 driven, the effective structure of a particular instance of a model will vary 
according to the data inputs. This means that some of the TIMES features will not be 
activated if the corresponding data is not specified. For example, in a multi-region model 
one region may, as a matter of user data input, have undiscovered domestic oil reserves. 
Accordingly, TIMES automatically generates technologies and processes that account for 
the cost of discovery and field development. If, alternatively, user supplied data indicate 
that a region does not have undiscovered oil reserves no such technologies and processes 
would be included in the representation of that regionÕs Reference Energy System (RES, 
see section 2.4). Due to this property TIMES may also be called a model generator that, 
based on the input information provided by the modeler, generates an instance of a 
model. In the following, if not stated otherwise, the word 'model' is used with two 
meanings indifferently: the instance of a TIMES model or more generally the model 
generator TIMES. 
 
Thus, the structure of a TIMES model is ultimately defined by variables and equations 
created from the union of the underlying TIMES equations and the data input provided by 
the user. This information collectively defines each TIMES regional model database, and 
therefore the resulting mathematical representation of the RES for each region. The 
database itself contains both qualitative and quantitative data.  
 
The qualitative data includes, for example, the list of commodities, and the list of those 
technologies that the modeler feels are applicable (to each region) over a specified time 
horizon. This information may be further classified into subgroups, for example 
commodities may include energy carriers (themselves split by type --e.g., fossil, nuclear, 
renewable, etc.), materials, emissions, energy services.  
 
Quantitative data, in contrast, contains the technological and economic parameter 
assumptions specific to each technology, region, and time period.  When constructing 
multi-region models it is often the case that a given technology is available for use in two 
or more regions; however, cost and performance assumptions may be quite different. The 
word attribute designates both qualitative and quantitative elements of the TIMES 
modeling system.  
 
 
 

                                                
7 Data in this context refers to parameter assumptions, technology characteristics, projections of energy 
service demands, etc.  It does not refer to historical data series.   
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2.6 A brief overview of the TIMES attributes 
 
Due to the data driven nature of TIMES (see section 2.5), all TIMES constraints are 
activated and defined by specifying some attributes. Attributes are attached to processes, 
to commodities, to flows, or to special variables that have been created to define new 
TIMES features. Indeed, TIMES has many new attributes that were not available in 
earlier versions, corresponding to powerful new features that confer additional modeling 
flexibility. The complete list of attributes is fully described in section 3 of PART II, and 
we provide below only succinct comments on the types of attribute attached to each 
entity of the RES or to the RES as a whole. Additional attribute definitions may also be 
included in the chapters describing new features or variants of the TIMES generator. 
 
Attributes may be cardinal (numbers) or ordinal (lists, sets). For example, some ordinal 
attributes are defined for processes to describe subsets of flows that are then used to 
construct specific flow constraints as described in section 5.4. PART II, section 2 shows 
the complete list of TIMES sets.  
 
The cardinal attributes are usually called parameters. We give below a brief idea of the 
main types of parameters available in the TIMES model generator. 
 

2.6.1 Parameters attached to processes 
 
TIMES process-oriented parameters fall into several general categories.  
 
2.6.1.1 Technical parameters 
 
Technical parameters include process efficiency, availability factor(s)8, commodity 
consumptions per unit of activity, shares of fuels per unit activity, technical life of the 
process, construction lead time, dismantling lead-time and duration, amounts of the 
commodities consumed (respectively released) by the construction (respectively 
dismantling) of one unit of the process, and contribution to the peak equations. The 
efficiency, availability factors, and commodity inputs and outputs of a process may be 
defined in several flexible ways depending on the desired process flexibility, on the time-
slice resolution chosen for the process and on the time-slice resolution of the 

                                                
8 There are a variety of availability factors: annual or seasonal. Each may be specified as a maximum factor 
(the most frequent case), an exact factor, or even a minimum factor (in order to force some minimum 
utilization of the capacity of some equipment, as in a backup gas turbine for instance). 
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commodities involved. Certain parameters are only relevant to special processes, such as 
storage processes or processes that implement trade between regions.  
 
2.6.1.2 Economic and policy parameters 
 
A second class of process parameters comprises economic and policy parameters that 
include a variety of costs attached to the investment, dismantling, maintenance, and 
operation of a process. The investment cost of the technology is incurred once at the time 
of acquisition; the fixed annual cost is incurred each year per unit of the capacity of the 
technology, as long as the technology is kept alive (even if it is not actively functioning); 
the annual variable cost is incurred per unit of the activity of the technology. In addition 
to costs, taxes and subsidies (on investment and/or on activity) may be defined in a very 
flexible manner. Other economic parameters are: the economic life of a process (the time 
during which the investment cost of a process is amortized, which may differ from the 
operational lifetime) and the process specific discount rate, also called hurdle rate. Both 
these parameters serve to calculate the annualized payments on the process investment 
cost, which enters the expression for the total cost of the run (section 5.2). 
 
2.6.1.3 Bounds 
 
Another class of parameter is used to define the right-hand-side of some constraint. Such 
a parameter represents a bound and its specification triggers the constraint on the 
quantity concerned. Most frequently used bounds are those imposed on period 
investment, capacity, or activity of a process. Newly defined bounds allow the user to 
impose limits on the annual or annualized payments at some period or set of consecutive 
years.  

 
A special type of bounding consists in imposing upper or lower limits on the growth rate 
of technologies. The most frequently quantities thus bounded are investment, capacity 
and activity of a process, for which a simplified formulation has been devised. 

 
The growth constraints belong to the class of dynamic bounds that involve multiple 
periods. Many other dynamic bounds may be defined by the user. Bounds on cumulative 
quantities are also very useful. The accumulation may be over the entire horizon or over 
some user defined set of consecutive years. The variables on which such bounds apply 
may quite varied, such as: process capacity, process investment, process activity, annual 
or annuity payments, etc.  

 



26 
 

All bounds may be of four types: lower (LO), upper (UP), equality (FX), or neutral (N). 
The latter case does not introduce any restriction on the optimization, and is used only to 
generate a new reporting quantity. 

 
2.6.1.4 Other parameters 

 
Features that were added to TIMES over the years require new parameters. For instance, 
the Climate Module of TIMES (chapter 7), the Lumpy Investment feature (chapter 10), 
and several others. These will be alluded to in the corresponding chapters of this Part I, 
and more completely described in section 2 and Appendices of Part II. 
 
An advanced feature allows the user to define certain process parameters as vintaged (i.e. 
dependent upon the date of installation of new capacity). For instance, the investment 
cost and fuel efficiency of a specific type of automobile will  depend on the model year9.  
 
Finally, another advanced TIMES feature renders some parameters dependent also on the 
age of the technology. For instance, the annual maintenance cost of an automobile could 
be defined to remain constant for say 3 years and then increase in a specified manner 
each year after the third year.  
 

2.6.2 Parameters attached to commodities 
 
This subsection concerns parameters attached to each commodity, irrespective of how the 
commodity is produced or consumed. The next subsection concerns commodity flows. 
Commodity-oriented parameters fall into the same categories as those attached to 
processes. 
 
2.6.2.1 Technical parameters  
 
Technical parameters associated with commodities include overall efficiency (for 
instance the overall electric grid efficiency), and the time-slices over which that 
commodity is to be tracked. For demand commodities, in addition, the annual projected 
demand and load curves (if the commodity has a sub-annual time-slice resolution) can be 
specified. 
 

                                                
9 Vintaging could also be introduced by defining a new technology for each vintage year, but this approach 
would be wasteful, as many parameters remain the same across all vintages. 



27 
 

2.6.2.2 Economic and policy parameters  
 
Economic parameters include additional costs, taxes, and subsidies on the overall or net 
production of a commodity. These cost elements are then added to all other (implicit) 
costs of that commodity. In the case of a demand service, additional parameters define 
the demand curve (i.e. the relationship between the quantity of demand and its price). 
These parameters are: the demandÕs own-price elasticity, the total allowed range of 
variation of the demand value, and the number of steps to use for the discrete 
approximation of the curve. 
 
Policy based parameters include bounds (at each period or cumulative over user defined 
years) on the gross or net production of a commodity, or on the imports or exports of a 
commodity by a region. 
 
2.6.2.3 Bounds 
 
In TIMES the net or the total production of each commodity may be explicitly 
represented by a variable, if needed for imposing a bound or a tax. A similar variety of 
bounding parameters exists for commodities as for processes. 
 

2.6.3 Parameters attached to commodity flows 
 
A commodity flow (more simply, a flow) is an amount of a given commodity produced or 
consumed by a given process. Some processes have several flows entering or leaving 
them, perhaps of different types (fuels, materials, demands, or emissions). In TIMES, 
each flow has a variable attached to it, as well as several attributes (parameters or sets). 
Flow related parameters confer enormous flexibility for modeling a large spectrum of 
conditions. 
 
2.6.3.1 Technical parameters 
 
Technical parameters, along with some set attributes, permit full control over the 
maximum and/or minimum share a given input or output flow may take within the same 
commodity group. For instance, a flexible turbine may accept oil and/or gas as input, and 
the modeler may use a parameter to limit the share of oil to, say, at most 40% of the total 
fuel input. Other parameters and sets define the amount of certain outflows in relation to 
certain inflows (e.g., efficiency, emission rate by fuel). For instance, in an oil refinery a 
parameter may be used to set the total amount of refined products equal to 92% of the 
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total amount of crude oils (s) entering the refinery, or to calculate certain emissions as a 
fixed proportion of the amount of oil consumed. If a flow has a sub-annual time-slice 
resolution, a load curve can be specified for the flow. It is possible to define not only load 
curves for a flow, but also bounds on the share of a flow in a specific time-slice relative 
to the annual flow, e.g. the flow in the time-slice ÒWinter-DayÓ has to be at least 10 % of 
the total annual flow. Refer to section 5.4 describing TIMES constraints for details. 
Cumulative bounds on a process flow are also allowed. 
 
2.6.3.2 Economic and policy parameters 
 
Economic or policy parameters include delivery and other variable costs, taxes and 
subsidies attached to an individual process flow. 
 
2.6.3.3 Bounds 
 
Bounds may be defined for flows in similar variety that exists for commodities. 
 

2.6.4 Parameters attached to the entire RES 
 
These parameters include currency conversion factors (in a multi-regional model), 
region-specific time-slice definitions, a region-specific general discount rate, and 
reference year for calculating the discounted total cost (objective function). In addition, 
certain switches are needed to control the activation of the data interpolation procedure as 
well as special model features to be used.  The complete set of switches is described in 
Part III . 
 
 

2.7 Process and commodity classification 
 
Although TIMES does not explicitly differentiate processes or commodities that belong 
to different portions of the RES (with the notable exceptions of storage and trading 
processes), there are three ways in which some differentiation does occur.  
 
First, TIMES requires the definition of Primary Commodity Groups (pcg), i.e. subsets of commodities of 
the same nature entering or leaving a process. TIMES utilizes the pcg to define the activity of the process, 
and also its capacity. For instance, the pcg of an oil refinery is defined as the set of energy forms produced 
by the plant; and the activity of the refinery is thus simply the sum of all its energy outputs (excluding any 
outputs that are non energy). 
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Besides establishing the process activity and capacity, these groups are convenient aids 
for defining certain complex quantities related to process flows, as discussed in chapter 5 
and in PART II, section 2.1. 
 
Even though TIMES does not require that the user provide many set memberships, the 
TIMES reporting step does pass some set declarations to the VEDA-BE result-processing 
system10to facilitate construction of results analysis tables. These include process subsets 
to distinguish demand devices, energy processes, material processes (by weight or 
volume), refineries, electric production plants, coupled heat and power plants, heating 
plants, storage technologies and distribution (link) technologies; and commodity subsets 
for energy, useful energy demands (split into six aggregate sub-sectors), environmental 
indicators, currencies, and materials. 
 
Besides the definition of pcg's and that of VEDA reporting sets, there is a third instance 
of commodity or process differentiation which is not embedded in TIMES, but rests 
entirely on the modeler. A modeler may well want to choose process and commodity 
names in a judicious manner so as to more easily identify them when browsing through 
the input database or when examining results. As an example, the TIAM -World multi-
regional TIMES model (Loulou, 2007) adopts a naming convention whereby the first 
three characters of a commodityÕs name denote the sector and the next three the fuel (e.g., 
light fuel oil used in the residential sector is denoted RESLFO). Similarly, process names 
are chosen so as to identify the sub-sector or end-use (first three characters), the main fuel 
used (next three), and the specific technology (last four). For instance, a standard (0001) 
residential water heater (RWH) using electricity (ELC) is named RWHELC0001. 
Naming conventions may thus play a critical role in allowing the easy identification of an 
elementÕs position in the RES and thus facilitate the analysis and reporting of results.  
 
Similarly, energy services may be labeled so that they are more easily recognized. For 
instance, the first letter may indicate the broad sector (e.g. ÔTÕ for transport) and the 
second letter designate any homogenous sub-sectors (e.g. ÔRÕ for road transport), the third 
character being free.  
 
In the same fashion, fuels, materials, and emissions may be identified so as to 
immediately designate the sector and sub-sector where they are produced or consumed. 
To achieve this, some fuels have to change names when they change sectors. This is 
accomplished via processes whose primary role is to change the name of a fuel. In 

                                                
10See Appendix A for the VEDA-FE, VEDA-BE, and ANSWER modeling and analysis systems, used to 
maintain and manage TIMES databases, conduct model runs, and organize results.  
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addition, such a process may serve as a bearer of sector wide parameters such as 
distribution cost, price markup, tax, that are specific to that sector and fuel. For instance, 
a tax may be levied on industrial distillate use but not on agricultural distillate use, even 
though the two commodities are physically identical.  
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3 Economic rationale of the TIMES modeling approach 
 
This chapter provides a detailed economic interpretation of TIMES and other partial 
equilibrium models based on maximizing total surplus. Partial equilibrium models have 
one common feature Ð they simultaneously configure the production and consumption of 
commodities (i.e. fuels, materials, and energy services) and their prices. The price of 
producing a commodity affects the demand for that commodity, while at the same time 
the demand affects the commodityÕs price. A market is said to have reached an 
equilibrium at prices p* and quantities q* when no consumer wishes to purchase less than 
q* and no producer wishes to produce more than q* at price p*. Both p* and q* are 
vectors whose dimension is equal to the number of different commodities being modeled. 
As will be explained below, when all markets are in equilibrium the total economic 
surplus is maximized.  
 
The concept of total surplus maximization extends the direct cost minimization approach 
upon which earlier bottom-up energy system models were based. These simpler models 
had fixed energy service demands, and thus were limited to minimizing the cost of 
supplying these demands. In contrast, the TIMES demands for energy services are 
themselves elastic to their own prices, thus allowing the model to compute a bona fide 
supply-demand equilibrium. This feature is a fundamental step toward capturing the main 
feedback from the economy to the energy system. 
 
Section 3.1 provides a brief review of different types of energy models. Section 3.2 
discusses the economic rationale of the TIMES model with emphasis on the features that 
distinguish TIMES from other bottom-up models (such as the early incarnations of 
MARKAL, see Fishbone and Abilock, 1981 and Berger et al., 1992, though MARKAL 
has since been extended beyond these early versions). Section 3.3 describes the details of 
how price elastic demands are modeled in TIMES, and section 3.4 provides additional 
discussion of the economic properties of the model.  
 
 

3.1. A brief classification of energy models 
 
Many energy models are in current use around the world, each designed to emphasize a 
particular facet of interest. Differences include: economic rationale, level of 
disaggregation of the variables, time horizon over which decisions are made (which is 
closely related to the type of decisions, i.e., only operational planning or also investment 
decisions), and geographic scope. One of the most significant differentiating features 
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among energy models is the degree of detail with which commodities and technologies 
are represented, which will guide our classification of models into two major classes, as 
explained in the following very streamlined classification.  
 

3.1.1 ÔTop-downÕ models 
 
At one end of the spectrum are aggregated General Equilibrium (GE) models. In these 
each sector is represented by a production function designed to simulate the potential 
substitutions between the main factors of production (also highly aggregated into a few 
variables such as: energy, capital, and labor) in the production of each sectorÕs output. In 
this model category are found a number of models of national or global energy systems. 
These models are usually called Òtop-downÓ, because they represent an entire economy 
via a relatively small number of aggregate variables and equations. In these models, 
production function parameters are calculated for each sector such that inputs and outputs 
reproduce a single base historical year.11 In policy runs, the mix of inputs12 required to 
produce one unit of a sectorÕs output is allowed to vary according to user-selected 
elasticities of substitution. Sectoral production functions most typically have the 
following general form:  
 

( ) !!!! /1
0 SESLsKs EBLBKBAX "+"+"=    (3-1) 

 
where  XS is the output of sector S, 

KS, LS, and ES are the inputs of capital, labor and energy needed to 
produce one unit of output in sector S, 

!  is the elasticity of substitution parameter, 
A0 and the BÕs are scaling coefficients. 

 
The choice of !  determines the ease or difficulty with which one production factor may 
be substituted for another: the smaller !  is (but still greater than or equal to 1), the easier 
it is to substitute the factors to produce the same amount of output from sector S. Also 
note that the degree of factor substitutability does not vary among the factors of 
production Ñ  the ease with which capital can be substituted for labor is equal to the ease 

                                                
11 These models assume that the relationships (as defined by the form of the production functions as well as 
the calculated parameters) between sector level inputs and outputs are in equilibrium in the base year. 
12 Most models use inputs such as labor, energy, and capital, but other input factors may conceivably be 
added, such as arable land, water, or even technical know-how. Similarly, labor may be further subdivided 
into several categories. 



33 
 

with which capital can be substituted for energy, while maintaining the same level of 
output. GE models may also use alternate forms of production function (3-1), but retain 
the basic idea of an explicit substitutability of production factors. 
 

3.1.2 ÔBottom-upÕ models 
 
At the other end of the spectrum are the very detailed, technology explicit models that 
focus primarily on the energy sector of an economy. In these models, each important 
energy-using technology is identified by a detailed description of its inputs, outputs, unit 
costs, and several other technical and economic characteristics. In these so-called 
Ôbottom-upÕ models, a sector is constituted by a (usually large) number of logically 
arranged technologies, linked together by their inputs and outputs (commodities, which 
may be energy forms or carriers, materials, emissions and/or demand services). Some 
bottom-up models compute a partial equilibrium via maximization of the total net 
(consumer and producer) surplus, while others simulate other types of behavior by 
economic agents, as will be discussed below. In bottom-up models, one unit of sectoral 
output (e.g., a billion vehicle kilometers, one billion tonnes transported by heavy trucks 
or one petajoule of residential cooling service) is produced using a mix of individual 
technologiesÕ outputs. Thus the production function of a sector is implicitly constructed, 
rather than explicitly specified as in more aggregated models. Such implicit production 
functions may be quite complex, depending on the complexity of the reference energy 
system of each sector (sub-RES).  
 

3.1.3 Hybrid approaches 
 
While the above dichotomy applied fairly well to earlier models, these distinctions now 
tend to be somewhat blurred by advances in both categories of model. In the case of 
aggregate top-down models, several general equilibrium models now include a fair 
amount of fuel and technology disaggregation in the key energy producing sectors (for 
instance: electricity production, oil and gas supply). This is the case with MERGE13 and 
SGM14, among others. 
 
In the other direction, the more advanced bottom-up models are Ôreaching upÕ to capture 
some of the effects of the entire economy on the energy system. The TIMES model has 

                                                
13 Model for Evaluating Regional and Global Effects (Manne et al., 1995) 
14 Second Generation Model (Edmonds et al., 1991) 
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end-use demands (including demands for industrial output) that are sensitive to their own 
prices, and thus captures the impact of rising energy prices on economic output and vice 
versa. Recent incarnations of technology-rich models (including TIMES) are multi-
regional, and thus are able to consider the impacts of energy-related decisions on trade. It 
is worth noting that while the multi-regional top-down models have always represented 
trade, they have done so with a very limited set of traded commodities Ð typically one or 
two, whereas there may be quite a number of traded energy forms and materials in multi-
regional bottom-up models.  
 
MARKAL -MACRO (Manne and Wene, 1992) and TIMES-MACRO (Kypreos and 
Lehtila, 2013) are hybrid models combining the technological detail of MARKAL with a 
succinct representation of the macro-economy consisting of a single producing sector in a 
single region. Because of its succinct single-sector production function, MARKAL-
MACRO is able to compute a general equilibrium in a single optimization step.  More 
recently, TIMES_MACRO-MSA (section 12.2) is based on the computation of a multi-
regional global equilibrium, but requires an iterative process to do so. MESSAGE 
(Messner and Strubegger, 1995) links a bottom-up model based on the EFOM paradigm 
with a macro module, and computes a global, multi-regional equilibrium iteratively. The 
NEMS (US EIA, 2000) model is another example of a full linkage between several 
technology rich modules of the various energy subsectors and a set of macro-economic 
equations, and requires iterative resolution methods.  
 
In spite of these advances in both classes of models, there remain important differences. 
Specifically:  
 

¥ Top-down models encompass macroeconomic variables beyond the energy sector 
proper, such as wages, consumption, and interest rates, and 

¥ Bottom-up models have a rich representation of the variety of technologies 
(existing and/or future) available to meet energy needs, and, they often have the 
capability to track a much wider variety of traded commodities. They are also 
more adapted to the representation of micro policies targeting specific 
technologies or commodities. 

 
The top-down vs. bottom-up approach is not the only relevant difference among energy 
models. Among top-down models, the so-called Computable General Equilibrium models 
(CGE) described above differ markedly from the macro econometric models. The latter 
do not compute equilibrium solutions, but rather simulate the flows of capital and other 
monetized quantities between sectors (see, e.g., Meade, 1996 on the LIFT model). They 
use econometrically derived input-output coefficients to compute the impacts of these 
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flows on the main sectoral indicators, including economic output (GDP) and other 
variables (labor, investments). The sector variables are then aggregated into national 
indicators of consumption, interest rate, GDP, labor, and wages.  
 
Among technology explicit models also, two main classes are usually distinguished: the 
first class is that of the partial equilibrium models such as MARKAL, MESSAGE, and 
TIMES, that use optimization techniques to compute a least cost (or maximum surplus) 
path for the energy system. The second class is that of simulation models, where the 
emphasis is on representing a system not governed purely by financial costs and profits. 
In these simulation models (e.g., CIMS, Jaccard et al. 2003), investment decisions taken 
by a representative agent (firm or consumer) are only partially based on profit 
maximization, and technologies may capture a share of the market even though their life-
cycle cost may be higher than that of other technologies. Simulation models use market-
sharing formulas that preclude the easy computation of equilibrium Ð at least not in a 
single pass. The SAGE (US EIA, 2002) incarnation of the MARKAL model possesses a 
market sharing mechanism that allows it to reproduce certain behavioral characteristics of 
observed markets. 
 
 

3.2 The core TIMES paradigm 
 
In the rest of this chapter, we present the properties of the core TIMES paradigm. As 
will be seen in chapters8 to 12, some of these properties are not applicable to several 
important TIMES variants. The reader should keep this caveat in mind when 
contemplating the use of some features that are described in these 5 chapters. 
 
Since certain portions of this and the next sections require an understanding of the 
concepts and terminology of Linear Programming, the reader requiring a brush-up on this 
topic may first read Appendix B, and then, if needed, some standard textbook on LP, 
such as Hillier and Lieberman (2009), Chvˆtal (1983), or Schrijver (1986). The 
application of Linear Programming to microeconomic theory is covered in two 
historically important references, Gale (1960 and 11th edition 1989), and in Dorfman, 
Samuelson, and Solow (1958, and 1987 reprint). 
 
A brief description of the core TIMES model generator would express that it is: 
 

¥ Technologically explicit, integrated; 

¥ Multi-regional; and 
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¥ Partial equilibrium (with price elastic demands for energy services) in 
competitive markets with perfect foresight. It will be seen that such an equilibrium 
entails marginal value pricing of all commodities. 

 
We now proceed to flesh out each of these properties.  
 

3.2.1 A technologically explicit integrated model 
 
As already presented in chapter 2 (and described in much more detail in Part II, section 
3), each technology is described in TIMES by a number of technical and economic 
parameters. Thus each technology is explicitly identified (given a unique name) and 
distinguished from all others in the model. A mature TIMES model may include several 
thousand technologies in all sectors of the energy system (energy procurement, 
conversion, processing, transmission, and end-uses) in each region. Thus TIMES is not 
only technologically explicit, it is technology rich and it is integrated as well. 
Furthermore, the number of technologies and their relative topology may be changed at 
will, purely via data input specification, without the user ever having to modify the 
modelÕs equations. The model is thus to a large extent data driven. 
 

3.2.2 Multi -regional 
 
Some existing TIMES models comprise several dozen regional modules, or more. The 
number of regions in a model is limited only by the difficulty of solving LPÕs of very 
large size. The individual regional modules are linked by energy and material trading 
variables, and by emission permit trading variables, if desired. The linking variables 
transform the set of regional modules into a single multi-regional (possibly global) 
energy model, where actions taken in one region may affect all other regions. This feature 
is essential when global as well as regional energy and emission policies are being 
simulated. Thus a multi-regional TIMES model is geographically integrated. 
 

3.2.3 Partial equilibrium 
 
The core version of TIMES computes a partial equilibrium on energy markets. This 
means that the model computes both the flows of energy forms and materials as well as 
their prices, in such a way that, at the prices computed by the model, the suppliers of 
energy produce exactly the amounts that the consumers are willing to buy. This 
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equilibrium feature is present at every stage of the energy system: primary energy forms, 
secondary energy forms, and energy services15. A supply-demand equilibrium model has 
as its economic rationale the maximization of the total surplus, defined as the sum of all 
suppliersÕ and consumersÕ surpluses. The mathematical method used to maximize the 
surplus must be adapted to the particular mathematical properties of the model. In 
TIMES, these properties are as follows: 
 

¥ Outputs of a technology are linear functions of its inputs (subsection 3.2.3.1)16; 

¥ Total economic surplus is maximized over the entire horizon (3.2.3.2); and 
¥ Energy markets are competitive, with perfect foresight (3.2.3.3)17. 
 
As a result of these assumptions the following additional properties hold: 
 

¥ The market price of each commodity is equal to its marginal value in the overall 
system (3.2.4); and  

¥ Each economic agent maximizes its own profit or utility (3.2.5). 
 
3.2.3.1 Linearity 
 
A linear input-to-output relationship first means that each technology represented may be 
implemented at any capacity, from zero to some upper limit, without economies or dis-
economies of scale. In a real economy, a given technology is usually available in discrete 
sizes, rather than on a continuum. In particular, for some real life technologies, there may 
be a minimum size below which the technology may not be implemented (or else at a 
prohibitive cost), as for instance a nuclear power plant, or a hydroelectric project. In such 
cases, because TIMES assumes that all technologies may be implemented in any size, it 
may happen that the modelÕs solution shows some technologyÕs capacity at an 
unrealistically small size. It should however be noted that in most applications, such a 
situation is relatively infrequent and often innocuous, since the scope of application is at 
the country or regionÕs level, and thus large enough so that small capacities are unlikely 
to occur.  
 

                                                
15It has been argued, based on strong experimental evidence, that the change in demands for energy 
services indeed captures the main economic impact of energy system policies on the economy at large 
(Loulou and Kanudia, 2000) 
16 This property does not hold in three TIMES extensions presented in Chapters 10-12.  
17 These two properties do not hold in the time-stepped extension of TIMES (chapter 9) and in Stochastic 
TIMES (Chapter 8.) 
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On the other hand, there may be situations where plant size matters, for instance when the 
region being modeled is very small. In such cases, it is possible to enforce a rule by 
which certain capacities are allowed only in multiples of a given size (e.g., build or not a 
gas pipeline), by introducing integer variables. This option, referred to as lumpy 
investment (LI), is available in TIMES and is discussed in chapter 10.  This approach 
should, however, be used sparingly because it may greatly increase solution time. 
It is the linearity property that allows the TIMES equilibrium to be computed using 
Linear Programming techniques. In the case where economies of scale or some other 
non-convex relationship is important to the problem being investigated, the optimization 
program would no longer be linear or even convex. We shall examine such cases in 
chapters 9 to 12. 
 
We must now mention a common misconception regarding linearity: the fact that TIMES 
equations are linear does not mean that production functions behave in a linear fashion; 
far from it. Indeed, the TIMES production functions are usually highly non-linear 
(although convex), consisting of a stepped sequence of linear functions. As a simple 
example, a supply of some resource is almost always represented as a sequence of 
segments, each with rising (but constant within an interval) unit cost. The modeler 
defines the ÔwidthÕ of each interval so that the resulting supply curve may simulate any 
non-linear convex function. In brief, diseconomies of scale are easily represented in 
linear models. 
 
3.2.3.2 Maximization of total surplus: Price equals marginal value 
 
The total surplus of an economy is the sum of the suppliersÕ and the consumersÕ 
surpluses. The term supplier designates any economic agent that produces (and/or sells) 
one or more commodities i.e., in TIMES, an energy form, a material, an emission permit, 
and/or an energy service. A consumer is a buyer of one or more commodities. In TIMES, 
the suppliers of a commodity are technologies that procure a given commodity, and the 
consumers of a commodity are technologies or service segments that consume a given 
commodity. Some (indeed most) technologies are both suppliers and consumers. 
Therefore, for each commodity the RES defines a complex set of suppliers and 
consumers.  
 
It is customary in microeconomics to represent the set of suppliers of a commodity by 
their inverse production function, that plots the marginal production cost of the 
commodity (vertical axis) as a function of the quantity supplied (horizontal axis). In 
TIMES, as in other linear optimization models, the supply curve of a commodity, with 
the exception of end-use demands, is entirely determined endogenously by the model. It 
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is a standard result of Linear Programming theory that the inverse supply function is step-
wise constant and increasing in each factor (see Figures 3.1 and 3.3 for the case of a 
single commodity18). Each horizontal step of the inverse supply function indicates that 
the commodity is produced by a certain technology or set of technologies in a strictly 
linear fashion. As the quantity produced increases, one or more resources in the mix 
(either a technological potential or some resourceÕs availability) is exhausted, and 
therefore the system must start using a different (more expensive) technology or set of 
technologies in order to produce additional units of the commodity, albeit at higher unit 
cost. Thus, each change in production mix generates one step of the staircase production 
function with a value higher than the preceding step. The width of any particular step 
depends upon the technological potential and/or resource availability associated with the 
set of technologies represented by that step.  

Figure 3.1. Equilibrium in the case of an energy form: the model implicitly constructs 
both the supply and the demand curves (note that the equilibrium is multiple in this 
configuration) 
 
In a similar manner, each TIMES model instance defines a series of inverse demand 
functions. In the case of demands, two cases are distinguished. First, if the commodity in 
question is an energy carrier whose production and consumption are endogenous to the 
model, then its demand function is implicitly constructed within TIMES, and is a step-

                                                
18 This is so because in Linear Programming the shadow price of a constraint remains constant over a 
certain interval, and then changes abruptly, giving rise to a stepwise constant functional shape. 

Price

QuantityQE

Supply Curve

Demand Curve

PE

Q

CÕ

SÕ

C

S

Equilibrium



40 
 

wise constant, decreasing function of the quantity demanded, as illustrated in Figure 3.1 
for a single commodity. If on the other hand the commodity is a demand for an energy 
service, then its demand curve is defined by the user via the specification of the own-
price elasticity of that demand, and the curve is in this instance a smoothly decreasing 
curve as illustrated in Figure 3.219. In both cases, the supply-demand equilibrium is at the 
intersection of the supply function and the demand function, and corresponds to an 
equilibrium quantity QE and an equilibrium price PE

20. At price PE, suppliers are willing 
to supply the quantity QE and consumers are willing to buy exactly that same quantity QE. 
Of course, the TIMES equilibrium concerns a large number of commodities 
simultaneously, and thus the equilibrium is a multi-dimensional analog of the above, 
where QE and PE are now vectors rather than scalars.  
 
As already mentioned, the demand curves of most TIMES commodities (i.e. energy 
carriers, materials, emission permits) are implicitly constructed endogenously as an 
integral part of the solution of the LP. For each commodity that is an energy service, the 
user explicitly defines the demand function by specifying its own price elasticity. In 
TIMES, each energy service demand is assumed to have a constant own price elasticity 
function of the form (see Figure 3.2): 
 

DM/DM0 = (P/P0)
E     (3-2) 

 
Where {DM0 ,P0} is a reference pair of demand and price values for that energy service 
over the forecast horizon, and E is the (negative) own price elasticity of that energy 
service demand, as specified by the user (note that although not obvious from the 
notation, this price elasticity may vary over time). The pair {DM0, P0} is obtained by 
solving TIMES for a reference scenario. More precisely, DM0is the demand projection 
estimated by the user in the reference scenario (usually based upon explicitly defined 
relationships to economic and demographic drivers), and P0 is the shadow price of that 
energy service demand in the dual solution of the reference case scenario. The precise 
manner in which the demand functions are discretized and incorporated in the TIMES 
objective function is explained in chapter 4. 
 
Using Figure 3.1 as an example, the definition of the suppliersÕ surplus corresponding to 
a certain point S on the inverse supply curve is the difference between the total revenue 
                                                
19 This smooth curve will be discretized later for computational purposes, and thus become a staircase 
function, as described in section 4.2 
20 As may be seen in figure 3.1, the equilibrium is not necessarily unique. In the case shown, any point on 
the vertical segment containing the equilibrium is also an equilibrium, with the same quantity QE but a 
different price. In other situations, the multiple equilibria may have a single price but multiple quantities. 
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and the total cost of supplying a commodity, i.e. the gross profit. In Figure 3.1, the 
surplus is thus the area between the horizontal segment SSÕ and the inverse supply curve. 
Similarly, the consumersÕ surplus for a point C on the inverse demand curve, is defined 
as the area between line segment CCÕ and the inverse demand curve. This area is a 
consumerÕs analog to a producerÕs profit; more precisely it is the cumulative opportunity 
gain of all consumers who purchase the commodity at a price lower than the price they 
would have been willing to pay. Thus, for a given quantity Q, the total surplus (suppliersÕ 
plus consumersÕ) is simply the area between the two inverse curves situated at the left of 
Q. It should be clear from Figure 3.1 that the total surplus is maximized when Q is 
exactly equal to the equilibrium quantity QE. Therefore, we may state (in the single 
commodity case) the following Equivalence Principle:  
 

ÒThe supply-demand equilibrium is reached when the total surplus is maximized.Ó 
 
This is a remarkably useful result, as it leads to a method for computing the equilibrium, 
as will be see in much detail in Chapter 4. 
 
In the multi-dimensional case, the proof of the above statement is less obvious, and 
requires a certain qualifying property (called the integrability property) to hold 
(Samuelson, 1952, Takayama and Judge, 1972). One sufficient condition for the 
integrability property to be satisfied is realized when the cross-price elasticities of any 
two energy forms are equal, viz. 
 

jiQPQP jiij ,allfor// !!=!!
 

 
In the case of commodities that are end-use energy services, these conditions are trivially 
satisfied in TIMES because we have assumed zero cross price elasticities. In the case of 
an endogenous energy carrier, where the demand curve is implicitly derived, it is also 
easy to show that the integrability property is always satisfied21. Thus the equivalence 
principle is valid in all cases.  
 

                                                
21 This results from the fact that in TIMES each price Piis the shadow price of a balance constraint (see 
section 5.4.4), and may thus be (loosely) expressed as the derivative of the objective function F with 

respect to the right-hand-side of a balance constraint, i.e. iQF !! / . When that price is further 

differentiated with respect to another quantity Qj, one gets ji QQF !¥!! /2 , which, under mild 

conditions is always equal to ij QQF !¥!! /2 , as desired. 
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In summary, the equivalence principle guarantees that the TIMES supply-demand 
equilibrium maximizes total surplus. The total surplus concept has long been a mainstay 
of social welfare economics because it takes into account both the surpluses of consumers 
and of producers.22 
 

Figure 3.2. Equilibrium in the case of an energy service: the user explicitly provides the 
demand curve, usually using a simple functional form (see text for details) 
 
 
Remark: In older versions of MARKAL, and in several other least-cost bottom-up 
models, energy service demands are exogenously specified by the modeler, and only the 
cost of supplying these energy services is minimized. Such a case is illustrated in Figure 
3.3 where the Òinverse demand curveÓ is a vertical line. The objective of such models 
was simply the minimization of the total cost of meeting exogenously specified levels of 
energy service. 

                                                
22 See e.g. Samuelson and Nordhaus (1977) 

Price

QuantityQE

Supply Curve

PE

Equilibrium

Demand curve



43 
 

Figure 3.3. Equilibrium when an energy service demand is fixed 
 
3.2.3.3 Competitive energy markets with perfect foresight 
 
Competitive energy markets are characterized by perfect information and atomic 
economic agents, which together preclude any of them from exercising market power. 
That is, neither the level at which any individual producer supplies, nor the level any 
individual consumer acquires, affects the equilibrium market price (because there are 
many other buyers and sellers to replace them).  It is a standard result of microeconomic 
theory that the assumption of competitive markets entails that the market price of a 
commodity is equal to its marginal value in the economy (Samuelson, 1952). This is of 
course also verified in the TIMES economy, as discussed in the next subsection.  
 
Of course, real world energy markets are not always competitive. For instance, an electric 
utility company may be a (regulated) monopoly within an entire country, or a cartel of oil 
producing countries may have market power on oil markets. There are ways around these 
so-called Òmarket imperfectionsÓ. For instance, concerning the monopolistic utility, a 
socially desirable approach would be to first use the assumption of marginal cost pricing, 
so as to determine a socially optimal plan for the monopoly, and then to have the 
regulatory agency enforce such a plan, including the principle of marginal cost pricing. 
The case of the oil producersÕ cartel is less simple, since there is no global regulatory 
agency to ensure that oil producers act in a socially optimal fashion. There are however 
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ways to use equilibrium models such as TIMES in order to faithfully represent the market 
power of certain economic agents, as exemplified in (Loulou et al., 2007).  
 
In the core version of TIMES, the perfect information assumption extends to the entire 
planning horizon, so that each agent has perfect foresight, i.e. complete knowledge of the 
marketÕs parameters, present and future. Hence, the equilibrium is computed by 
maximizing total surplus in one pass for the entire set of periods. Such a farsighted 
equilibrium is also called an inter-temporal dynamic equilibrium. 
 
Note that there are at least two ways in which the perfect foresight assumption may be 
voided: in one variant, agents are assumed to have foresight over a limited portion of the 
horizon, say one or a few periods. Such an assumption of limited foresight is embodied in 
the TIMES feature discussed in chapter 9, as well as in the SAGE variant of MARKAL 
(US EIA, 2002). In another variant, foresight is assumed to be imperfect, meaning that 
agents may only probabilistically know certain key future events. This assumption is at 
the basis of the TIMES Stochastic Programming option, discussed in chapter 8. 
 

3.2.4 Marginal value pricing 
 
We have seen in the preceding subsections that the TIMES equilibrium occurs at the 
intersection of the inverse supply and inverse demand curves. It follows that the 
equilibrium prices are equal to the marginal system values of the various commodities. 
From a different angle, the duality theory of Linear Programming (chapter 14) indicates 
that for each constraint of the TIMES linear program there is a dual variable. This dual 
variable (when an optimal solution is reached) is also called the constraintÕs shadow 
price23, and is equal to the marginal change of the objective function per unit increase of 
the constraintÕs right-hand-side. For instance, the shadow price of the balance constraint 
of a commodity (whether it be an energy form, material, a service demand, or an 
emission) represents the competitive market price of the commodity.  
 

                                                
23 The term shadow price is often used in the mathematical economics literature, whenever the price is 
derived from the marginal value of a commodity. The qualifier ÔshadowÕ is used to distinguish the 
competitive market price from the price observed in the real world, which may be different, as is the case in 
regulated industries or in sectors where either consumers or producers exercise market power, or again 
when other market imperfections exist. When the equilibrium is computed using LP optimization, as is the 
case for TIMES, the shadow price of each commodity is computed as the dual variable of that commodityÕs 
balance constraint, see chapter 14 
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The fact that the price of a commodity is equal to its marginal value is an important 
feature of competitive markets. Duality theory does not necessarily indicate that the 
marginal value of a commodity is equal to the marginal cost of producing that 
commodity. For instance, in the equilibrium shown in Figure 3.4 the price does not 
correspond to any marginal supply cost, since it is situated at a discontinuity of the 
inverse supply curve. In this case, the price is precisely determined by demand rather than 
by supply, and the term marginal cost pricing (so often used in the context of optimizing 
models) is sensu stricto incorrect. The term marginal value pricing is a more appropriate 
term to use.  
 
It is important to reiterate that marginal value pricing does not imply that suppliers have 
zero profit. Profit is exactly equal to the suppliersÕ surplus, and is generally positive. 
Only the last few units produced may have zero profit, if, and when, their production cost 
equals the equilibrium price. 
 
In TIMES the shadow prices of commodities play a very important diagnostic role. If 
some shadow price is clearly out of line (i.e. if it seems much too small or too large 
compared to the anticipated market prices), this indicates that the modelÕs database may 
contain some errors. The examination of shadow prices is just as important as the 
analysis of the quantities produced and consumed of each commodity and of the 
technological investments. 
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Figure 3.4. Case where the equilibrium price is not equal to any marginal supply cost. 
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3.2.5 Profit maximization: the Invisible Hand 
 
An interesting property may be derived from the assumptions of competitiveness. While 
the avowed objective of the TIMES model is to maximize the overall surplus, it is also 
true that each economic agent in TIMES maximizes its own surplus. This property is akin 
to the famous Ôinvisible handÕ property of competitive markets, and may be established 
rigorously by the following theorem that we state in an informal manner:  
 

Theorem: Let (p*,q*) be a pair of equilibrium vectors that maximize total surplus. 
If we now replace the original TIMES linear program by one where all 
commodity prices are fixed at value p*, and we let each agent maximize its own 
surplus, the vector of optimal quantities produced or purchased by the agents also 
maximizes the total surplus24. 

 
This property is important inasmuch as it provides an alternative justification for the class 
of equilibria based on the maximization of total surplus. It is now possible to shift the 
modelÕs rationale from a global, societal one (total surplus maximization), to a local, 
decentralized one (individual utility maximization). Of course, the equivalence suggested 
by the theorem is valid only insofar as the marginal value pricing mechanism is strictly 
enforcedÑ that is, neither an individual producer nor an individual consumer may affect 
market pricesÑ both are price takers. Clearly, some markets are not competitive in the 
sense the term has been used here. For example, the behavior of a few oil producers has a 
dramatic impact on world oil prices, which then depart from their marginal system value. 
Market power25 may also exist in cases where a few consumers dominate a market.  
 
 

  

                                                
24 However, the resulting Linear Program has multiple optimal solutions. Therefore, although q* is an 
optimal solution, it is not necessarily the one found when the modified LP is solved. 
25 An agent has market power if its decisions, all other things being equal, have an impact on the market 
price. Monopolies and oligopolies are example of markets where one or several agents have market power. 
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4 Core TIMES model: Mathematics of the computation of the 
supply-demand equilibrium 

 
In the preceding chapter, we have seen that TIMES does more than minimize the cost of 
supplying energy services. Instead, it computes a supply-demand equilibrium where both 
the energy supplies and the energy service demands are endogenously determined by the 
model. The equilibrium is driven by the user-defined specification of demand functions, 
which determine how each energy service demand varies as a function of the current 
market price of that energy service. The TIMES code assumes that each demand has 
constant own-price elasticity in a given time period, and that cross price elasticities are 
zero. We have also seen that economic theory establishes that the equilibrium thus 
computed corresponds to the maximization of the net total surplus, defined as the sum of 
the suppliersÕ and consumersÕ surpluses. We have argued in section 3.2 that the total net 
surplus has often been considered a valid metric of societal welfare in microeconomic 
literature, and this fact confers strong validity to the equilibrium computed by TIMES. 
Thus although TIMES falls short of computing a general equilibrium, it does capture a 
major element of the feedback effects not previously accounted for in bottom-up energy 
models.  
 
In this chapter we provide the details on how the equilibrium is transformed into an 
optimization problem and solved accordingly.  
 
Historically, the approach was first used in the Project Independence Energy System 
(PIES, see Hogan, 1975), although in the context of demands for final energy rather than 
for energy services as in TIMES or MARKAL. It was then proposed for MARKAL 
model by Tosato (1980) and Altdorfer (1982), and later made available as a standard 
MARKAL option by Loulou and Lavigne (1995). The TIMES implementation is 
identical to the MARKAL one. 
 
 

4.1 Theoretical considerations: the Equivalence Theorem 
 
The computational method is based on the equivalence theorem presented in chapter 3, 
which we restate here:   
 
"A supply/demand economic equilibrium is reached when the sum of the producers and 
the consumers surpluses is maximized" 
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Figure 3.2 of Chapter 3 provides a graphical illustration of this theorem in a case where 
only one commodity is considered.  
 
 

4.2 Mathematics of the TIMES equilibrium 

4.2.1 Defining demand functions 
 
From chapter 3, we have the following demand function for each demand category i 
 

)14()/(/ 00 != iE
iiii ppDMDM  

Or its inverse: 

iE
iiii DMDMpp /100 )/(!=  

 
where the superscript Ô0Õ indicates the reference case, and the elasticity Ei  is negative. 
Note also that the elasticity may have two different values, one for upward changes in 
demand, the other for downward changes. 
 

4.2.2 Formulating the TIMES equilibrium 
 
With inelastic demands (i.e. pure cost minimization), the TIMES model may be written 
as the following Linear Program: 
 

Min c! X (4" 2)

s.t. VAR_ACTk,i (t) # DMi (t) i =1,2,.., I ; t =1,..,T
k

$ (4" 3)

and B! X # b (4" 4)

 

 
where X is the vector of all TIMES variables and I  is the number of demand categories. 
In words: 
 

¥ (4-2) expresses the total discounted cost to be minimized. See chapter 5 for details 
on the list of TIMES variables X, and on the cost vector c. 
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¥ (4-3) is the set of demand satisfaction constraints (where the VAR_ACT variables 
are the activity levels of end-use technologies, and the DM right-hand-sides are 
the exogenous demands to satisfy).   

¥ (4-4) is the set of all other TIMES constraints, which need not be explicated here, 
and are presented in chapter 5. 

 
When demand are elastic, TIMES must compute a supply/demand equilibrium of the 
optimization problem (4-2) through (4-4), where the demand side adjusts to changes in 
prices, and the prevailing demand prices are the marginal costs of the demand categories 
(i.e. pi is the marginal cost of producing demand DMi). A priori this seems to be a 
difficult task, because the demand prices are computed as part of the dual solution to that 
optimization problem. The Equivalence Theorem, however, states that the equilibrium is 
reached as the solution of the following mathematical program, where the objective is to 
maximize the net total surplus: 
 

Max pi
0(t)! DMi

0(t)"# $%
&1/Ei¥ q1/Ei !dq

a

DMi (t )

'
(

)
*

+

,
-

t

.
i

. &c! X (4&5)

s.t. VAR_ACTk,i (t) & DMi (t)/ 0 i =1,.., I ; t =1,..,T
k

. (4&6)

and B! X / b (4&7)

 

 
where X is the vector of all TIMES variables, (4-5) expresses the total net surplus, and 
DM(t )is now a vector of variables in (4-6), rather than fixed demands. The integral in (4-
5) is easily computed, yielding the following maximization program: 
 

Max pi
0(t) ! DMi

0(t)"# $%
&1/Ei¥DMi (t)

1+1/Ei / (1+1/ Ei )( )
t

'
i

' &c! X (4&5)'

s.t. VAR_ACTk,i (t) ( DMi (t) i =1,.., I ; t =1,..,T
k

' (4&6)'

B! X ( b (4&7)'

 

 
We are almost there, but not quite, since the [DMi(t)]

-1/Ei  are non linear expressions and 
thus not directly usable in an L.P. 
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4.2.3 Linearization of the Mathematical Program 
 
The Mathematical Program embodied in (4-5)Õ, (4-6)Õ and (4-7)Õ has a non-linear 
objective function. Because the latter is separable (i.e. does not include cross terms) and 
concave in the DMi variables, each of its terms is easily linearized by piece-wise linear 
functions which approximate the integrals in (4-5). This is the same as saying that the 
inverse demand curves are approximated by staircase functions, as illustrated in figure 
4.1. By so doing, the resulting optimization problem becomes linear again. The 
linearization proceeds as follows. 
 

a) For each demand category i, and each time period t, the user selects a range 
R(t)i, i.e. the distance between some values DMi(t)min and DMi(t)max. The user 
estimates that the demand value DMi(t) will always remain within such a range, 
even after adjustment for price effects (for instance the range could be equal to 
the reference demand DMo

i(t) plus or minus 50%).  
b) Select a grid that divides each range into a number n of equal width intervals. 

Let §i(t) be the resulting common width of the grid, §i(t)= Ri(t)/n.  See Figure 
4.1 for a sketch of the non-linear expression and of its step-wise constant 
approximation. The number of steps, n, should be chosen so that the step-wise 
constant approximation remains close to the exact value of the function. 

c) For each demand segment DMi(t) define n step-variables (one per grid 
interval), denoted s1,i(t), s2,i (t), É, sn,i(t). Each s variable is bounded below by 0 
and above by §i(t). One may now replace in equations (4-5)Õ and (4-6)Õ each 
DMi(t) variable by the sum of the n-step variables, and each non-linear term in 
the objective function by a weighted sum of the n step-variables, as follows: 

 

 DMi (t) = DM(t)min + sj,i (t) 4! 8
j=1

n

"  

and 
 
 

 
The Aj,i,t term is equal to the value of the inverse demand function of the jth demand at the 
mid-point of the ith interval. The resulting Mathematical Program is now fully linearized. 
 
Since the Aj,i,t terms have decreasing values (due to the concavity of the curve), the 
optimization will always make sure that the sj,I variables are increased consecutively and 
in the correct order, thus respecting the step-wise constant approximation described 
above. 

DMi (t)
1+1/Ei ! DM(t)min

1+1/Ei + Aj,s,i (t)¥sj,i (t)
j=1

n

" 4# 9
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Remark: Instead of maximizing the linearized objective function, TIMES minimizes its 
negative, which then has the dimension of a cost. The portion of that cost representing the 
negative of the consumer surplus is akin to a welfare loss. 

x=DMi(t)

F(x) = x (1/Ei)

Ai,j (t)

Range = Ri(t) 

! i(t)

Figure 4.1. Step-wise constant approximation of the non-linear terms in the objective 
function 
 

4.2.4 Calibration of the demand functions 
 
Besides selecting elasticities for the various demand categories, the user must evaluate 
each constant Ki(t). To do so, we have seen that one needs to know one point on each 
demand function in each time period,{ p0

i(t),DM0
i(t) }. To determine such a point, we 

perform a single preliminary run of the inelastic TIMES model (with exogenous DM0
i(t)), 

and use the resulting shadow prices p0
i(t) for all demand constraints, in all time periods 

for each region. 
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4.2.5 Computational considerations 
 
Each demand segment that is elastic to its own price requires the definition of as many 
variables as there are steps in the discrete representation of the demand curve (both 
upward and down if desired), for each period and region. Each such variable has an upper 
bound, but is otherwise involved in no new constraint. Therefore, the linear program is 
augmented by a number of variables, but does not have more constraints than the initial 
inelastic LP (with the exception of the upper bounds). It is well known that with modern 
LP codes the number of variables has little or no impact on computational time in Linear 
Programming, whether the variables are upper bounded or not. Therefore, the inclusion in 
TIMES of elastic demands has a very minor impact on computational time or on the 
tractability of the resulting LP. This is an important observation in view of the very large 
LPÕs that result from representing multi-regional and global models in TIMES. 
 

4.2.6 Interpreting TIMES costs, surplus, and prices 
 
It is important to note that, instead of maximizing the net total surplus, TIMES minimizes 
its negative (plus a constant), obtained by changing the signs in expression (4-5). For this 
and other reasons, it is inappropriate to pay too much attention to the meaning of the 
absolute objective function values. Rather, examining the difference between the 
objective function values of two scenarios is a far more useful exercise. That difference is 
of course, the negative of the difference between the net total surpluses of the two 
scenario runs.  
 
Note again that the popular interpretation of shadow prices as the marginal costs of 
model constraints is inaccurate. Rather, the shadow price of a constraint is, by definition, 
the incremental value of the objective function per unit of that constraintÕs right hand side 
(RHS). The interpretation is that of an amount of surplus loss per unit of the constraintÕs 
RHS. The difference is subtle but nevertheless important. For instance, the shadow price 
of the electricity balance constraint is not necessarily the marginal cost of producing 
electricity. Indeed, when the RHS of the balanced constraint is increased by one unit, one 
of two things may occur: either the system produces one more unit of electricity, or else 
the system consumes one unit less of electricity (perhaps by choosing more efficient end-
use devices or by reducing an electricity-intensive energy service, etc.) It is therefore 
correct to speak of shadow prices as the marginal system value of a resource, rather than 
the marginal cost of procuring that resource.  
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5 Core TIMES Model: A simplified description of the 
Optimization Program (variables, objective, constraints) 

 
This chapter contains a simplified formulation of the core TIMES Linear Program.  
 
Mathematically, a TIMES instance is a Linear Program, as was mentioned in the previous 
chapter. A Linear Program (LP for short) consists in the minimization or maximization of 
an objective function (defined as a linear mathematical expression of decision variables), 
subject to linear constraints, also called equations26. 
 
Very large instances of Linear Programs involving sometimes millions of constraints and 
variables may be formulated using modern modeling languages such as GAMS 
(http://www.gams.com/help/index.jsp), and solved via powerful Linear Programming 
optimizers27. The Linear Program described in this chapter is much simplified, since it 
ignores many exceptions and complexities that are not essential to a basic understanding 
of the principles of the model. Chapter 14 gives additional details on general Linear 
Programming concepts. The full details of the parameters, variables, objective function, 
and constraints of TIMES are given in Part II of this documentation (sections 3, 5, and 6). 
 
A linear optimization problem formulation consists of three types of entities:  
 

!  the decision variables: i.e. the unknowns, or endogenous quantities, to be 
determined by the optimization; 

!  the objective function: expressing the criterion to be minimized or maximized; 
and; 

!  the constraints: equations or inequalities involving the decision variables that 
must be satisfied by the optimal solution. 

 
 

5.1 Indices 
 
The model data structures (sets and parameters), variables and equations use the 
following indices: 
 

                                                
26 This rather improper term includes equality as well as inequality relationships between mathematical 
expressions. 
27 For more information on optimizers see Brooke et al., 1998 
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r:  indicates the region  
t or v: time period; t corresponds to the current period, and v is used to indicate the 

vintage year of an investment. When a process is not vintaged then v = t. 
p: process (technology) 
s: time-slice; this index is relevant only for user-designated commodities and  

processes that are tracked at finer than annual level (e.g. electricity, low- 
temperature heat, and perhaps natural gas, etc.). Time-slice defaults to 
ÒANNUALÓ, indicating that a commodity is tracked only annually. 

c: commodity (energy, material, emission, demand). 
 
 

5.2 Decision variables 
 
The decision variables represent the choices to be made by the model, i.e. the unknowns. 
All TIMES variables are prefixed with the three letters VAR followed by an underscore. 
 
Important remark : There are two possible choices concerning the very meaning of 
some decision variables, namely those variables that represent yearly flows or process 
activities. In the original TIMES formulation, the activity of a process during some 
period t is considered to be constant in all years constituting the period. This is illustrated 
in panel M.a of Figure 5.1).In the alternative option the activity variable is considered to 
represent the value in a milestone year of each period, and the values at all other years is 
linearly interpolated between the consecutive milestone year values, as illustrated in 
panel M.b). A milestone year is chosen close to the middle of a period. This second 
option is similar to that of the EFOM and the MESSAGE models. The user is free to 
choose either option. The constraints and objective function presented below apply to the 
first option (constant value of activity variables within a period). Appropriate changes in 
constraints and objective function are made for the alternative option, as explained in 
section 5.5, and more completely in Part II, section 6. 
 
The main kinds of decision variables in a TIMES model are: 
 
VAR_NCAP(r,v,p): new capacity addition (investment) for technology p, in period v and 
region r.  For all technologies the v value corresponds to the vintage of the process, i.e. 
year in which it is invested in. For vintaged technologies (declared as such by the user) 
the vintage (v) information is reflected in other process variables, discussed below. 
Typical units are PJ/year for most energy technologies, Million tonnes per year (for steel, 
aluminum, and paper industries), Billion vehicle-kilometers per year (B-vkm/year) or 
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million cars for road vehicles, and GW for electricity equipment (1GW=31.536 PJ/year), 
etc.  
 

 
Figure 5.1.Process activity in the original TIMES formulation (top) and Linear variant 
(bottom) 
 
VAR_RCAP(r,v,t,p): Amount of capacity that is newly retired at period t. The new 
retirements will reduce the available capacity of vintage v in period t and in all successive 
periods ti> t by the value of the variable. This new feature was not available in early 
versions of TIMES. Note carefully that the feature must be activated by a special switch 
in order to become effective. Note also that additional a new advanced feature allows the 
user to specify that capacity retirement may only occur in lump amounts that are either 
equal to the entire remaining capacity or equal to a multiple of some user defined block. 
Consult the separate technical note TIMES Early Retirement of Capacity for details.  
 
VAR_DRCAP(r,v,t,p,j): Binary variables used in formulating the special early retirement 
equations. Two variables may be defined, one when retirement must be for the entire 
remaining capacity (j=1), another when retirement must be a multiple of some block 
defined by the user via parameter RCAP_BLK (j=2). 
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VAR_SCAP(r,v,t,p):Total amount of capacity that has been retired at period t and periods 
preceding t (see above VAR_RCAPparagraph). 
 
CAP(r,v,t,p): installed capacity of process p, in region r and period t, optionally with 
vintage v. It represents the total capacity available at period t, considering the residual 
capacity at the beginning of the modeling horizon and adding to it new investments made 
prior to and including period t that have not reached their technical lifetime, and 
subtracting retired capacity. Typical units: same as investments. The CAP quantity, 
although convenient for formulation and reporting purposes, is in fact not explicitly 
defined in the model, but is derived from the VAR_NCAP variables and from data on past 
investments, process lifetimes, and any retirements. 
 
VAR_CAP(r,t,p): total installed capacity of technology p, in region r andperiod t, all 
vintages together. The VAR_CAP variables are only defined when some bounds or user-
constraints are specified for them. They do not enter any other equation. 
 
Remark: The lumpy investment option. There is a TIMES feature that allows the user to 
impose that new additions to capacity may only be done in predefined blocks. This 
feature may be useful for technologies that are implementable only in discrete sizes such 
as a nuclear plant, or a large hydroelectric project. The user should however be aware that 
using this option voids some of the economic properties of the equilibrium. This feature 
is described in Chapter 10 of this part of the documentation. 
 
VAR_ACT(r,v,t,p,s): activity level of technology p, in region r and period t (optionally 
vintage v and time-slice s). Typical units: PJ for all energy technologies. The s index is 
relevant only for processes that produce or consume commodities specifically declared as 
time-sliced. Moreover, it is the process that determines which time slices prevail. By 
default, only annual activity is tracked. 
 
VAR_FLO(r,v,t,p,c,s): the quantity of commodity c consumed or produced by process p, 
in region r and period t (optionally with vintage v and time-slice s). Typical units: PJ for 
all energy technologies. The VAR_FLO variables confer considerable flexibility to the 
processes modeled in TIMES, as they allow the user to define flexible processes for 
which input and/or output flows are not rigidly linked to the process activity.  
 
VAR_SIN(r,v,t,p,c,s)/VAR_SOUT(r,v,t,p,c,s): the quantity of commodity c stored or 
discharged by storage process p, in time-slice s, period t (optionally with vintage v), and 
region r. 
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VAR_IRE(r,v,t,p,c,s,exp) and VAR_IRE(r,v,t,p,c,s,imp)28: quantity of commodity c (PJ 
per year) sold (exp) or purchased (imp) by region r through export (resp. import) process 
p in period t(optionally in time-slice s). Note that the topology defined for the exchange 
process p specifies the traded commodity c, the region r, and the regions rÕ with which 
region r is trading commodity c. In the case of bi-lateral trading, if it is desired that 
region r should trade with several other regions, each such trade requires the definition of 
a separate bi-lateral exchange process. Note that it is also possible to define multi-lateral 
trading relationships between region r and several other regions rÕ by defining one of the 
regions as the common market for trade in commodity c. In this case, the commodity is 
Ôput on the marketÕ and may be bought by any other region participating in the market. 
This approach is convenient for global commodities such as emission permits or crude 
oil. Finally, exogenous trading may also be modeled by specifying the rÕ region as an 
external region. Exogenous trading is required for models that are not global, since 
exchanges with non-modeled regions cannot be considered endogenous.  
 
VAR_DEM(r,t,d): demand for end-use energy service d in region r  and period t. It is a 
true variable, even though in the reference scenario, this variable is fixed by the user. In 
alternate scenarios however, VAR_DEM(r,t,d) may differ from the reference case 
demand due to the responsiveness of demands to their own prices (based on each service 
demandÕs own-price elasticity). Note that in this simplified formulation, we do not show 
the variables used to decompose DEM(r,t,d) into a sum of step-wise quantities, as was 
presented in chapter 4. 
 
Other variables: Several options that have been added to TIMES over the successive 
versions require the definition of additional variables. They are alluded to in the sections 
describing the new options, and described more precisely in Part II, and in additional 
technical notes. Also, TIMES has a number of commodity related variables that are not 
strictly needed but are convenient for reporting purposes and/or for applying certain 
bounds to them. Examples of such variables are: the total amount produced of a 
commodity (VAR_COMPRD), or the total amount consumed of a commodity 
(VAR_COMCON).  
 
Important remark : It is useful to know that many variables (for instance the above two 
accounting variables, but also the flow variables described earlier) add only a moderate 
computational burden to the optimization process, thanks to the use of a reduction 
algorithm to detect and eliminate redundant variables and constraints before solving the 

                                                
28 IRE stands for Inter-Regional Exchange 
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LP. These variables and constraints are later reinstated in the solution file for reporting 
purposes. 
 
 

5.3 TIMES objective function: discounted total system cost 

5.3.1 The costs accounted for in the objective function 
 
The Surplus Maximization objective is first transformed into an equivalent Cost 
Minimization objective by taking the negative of the surplus, and calling this value the 
total system cost. This practice is in part inspired from historical custom from the days of 
the fixed demand MARKAL model. The TIMES objective is therefore to minimize the 
total 'cost' of the system, properly augmented by the ÔcostÕ of lost demand. All cost 
elements are appropriately discounted to a user-selected year.  
 
In TIMES, the cost elements are defined at a finer level than the period. While the 
TIMES constraints and variables are linked to a period, the components of the system 
cost are expressed for each year of the horizon (and even for some years outside the 
horizon). This choice is meant to provide a smoother, more realistic rendition of the 
stream of cost payments in the energy system, as discussed below. Each year, the total 
cost includes the following elements:  
 

!  Capital Costs incurred for investing into and/or dismantling processes. 
!  Fixed and variable annual Operation and Maintenance (O&M) Costs, and other 

annual costs occurring during the dismantling of technologies. 
!  Costs incurred for exogenous imports and for domestic resource extraction and 

production. An exogenous import is one that imported from a non-specified 
entity, i.e. not from another modeled region. Exogenous imports are not relevant 
in global TIMES instances. 

!  Revenues from exogenous export. An exogenous export is one that is exported to 
a non-specified entity, i.e. not to another modeled region. Exogenous exports are 
irrelevant in global TIMES instances. Exogenous export earnings are revenues 
and appear with a negative sign in the cost expressions. 

!  Delivery costs for commodities consumed by the processes. These costs are 
attached to commodity flows. 

!  Taxes and subsidies associated with commodity flows and process activities or 
investments. A tax is not a cost per se. However, since the tax is intended to 
influence the optimization, it is considered as an integral part of the objective 
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function. It is however reported separately from regular costs. Similarly for 
subsidies. 

!  Revenues from recuperation of embedded commodities, accrued when a processÕs 
dismantling releases some valuable commodities. 

!  Damage costs (if defined) due to emissions of certain pollutants. Several 
assumptions are made: the damage costs in region r result from emissions in r and 
possibly in other regions; damage cost is imputed to the emitting region (polluter 
pays); emissions in period t entail damages in period t only; the damage cost from 
several types of emission is assumed to be the sum of the costs from each 
emission type (no cross-effect); and the damage function linking cost DAM to 
emissions EM is a power function of the form: 

!
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Where ! is non-negative (i.e. marginal damage costs are non decreasing). Hence, 
the damage cost function is linear (!=0) or non linear but convex (! >0). 
Therefore, the same linearization procedure that was used for the surplus may be 
applied here in order to linearize the damage cost29. Appendix B of Part II and 
Technical note "TIMES Damage", explain how to declare the various parameters 
required to define the damage functions, to specify the linearization parameters, 
and to define the switches used to control the optimization. It should be noted that 
global emissions such as GHG's should not be treated via this feature but rather 
should make use of the Climate Module option described in chapter 7. 

!  Salvage value of processes and embedded commodities at the end of the planning 
horizon. This revenue appears with a negative sign in the cost expressions. It 
should also be stressed that the calculation of the salvage value at the end of the 
planning horizon is very complex and that the original TIMES expressions 
accounting for it contained some biases (over- or under-estimations of the salvage 
values in some cases). These biases have been corrected in the present version of 
TIMES as explained in sections 5.3.4 and 5.5. 

!  Welfare loss resulting from reduced end-use demands. Chapter 4has presented the 
mathematical derivation of this quantity. 

 
 
 
 

                                                
29 Alternatively, one may use a convex programming code to solve the entire TIMES LP. 
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5.3.2 Cash flow tracking 
 

As already mentioned, in TIMES, special care is taken to precisely track the cash flows 
related to process investments and dismantling in each year of the horizon. Such tracking 
is made complex by several factors:  

 
!  First, TIMES recognizes that there may be a lead-time (ILED) between the 

beginning and the end of the construction of some large processes, thus spreading 
the investment installments over several years. A recent TIMES feature allows the 
definition of a negative lead-time, with the meaning that the construction of the 
technology starts before the year the investment decision is made (this is useful 
for properly accounting for interest during construction, and is especially needed 
when using the time-stepped version of TIMES described in chapter 9.) 

!  Second, TIMES also recognizes that for some other processes (e.g. new cars), the 
investment in new capacity occurs progressively over the years constituting the 
time period (whose length is denoted by D(t)), rather than in one lumped amount. 

!  Third, there is the possibility that a certain investment decision made at period t 
will have to be repeated more than once during that same period. (This will occur 
if the period is long compared to the process technical life.) 

!  Fourth, TIMES recognizes that there may be dismantling capital costs at the end-
of-life of some processes (e.g. a nuclear plant), and that these costs, while 
attached to the investment variable indexed by period t, are actually incurred 
much later. 

!  Finally, TIMES permits the payment of any capital cost to be spread over an 
economic life (ELIFE) that is different from the technical life (TLIFE) of the 
process. Furthermore it may be annualized at a different rate than the overall 
discount rate. 

 
To illustrate the above complexities, we present a diagram taken from Part II that pictures 
the yearly investments and yearly outlays of capital in one particular instance where there 
is no lead time and no dismantling of the technology, and the technical life of the 
technology does not exceed the period length. There are 4 distinct such instances, 
discussed in detail in section 6.2 of Part II. 
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Figure 5.2. Illustration of yearly investments and payments for one of four investment 
tracking cases  

 

5.3.3 Aggregating the various costs 
 
The above considerations, while adding precision and realism to the cost profile, also 
introduce complex mathematical expressions into the objective function. In this 
simplified formulation, we do not provide much detail on these complex expressions, 
which are fully described in section 6.2 of Part II. We limit our description to giving 
general indications on the cost elements comprising the objective function, as follows:  
 

!  The capital costs (investment and dismantling) are first transformed into streams 
of annual payments, computed for each year of the horizon (and beyond, in the 
case of dismantling costs and recycling revenues), along the lines presented 
above. 

!  A salvage value of all investments still active at the end of the horizon (EOH) is 
calculated as a lump sum revenue which is subtracted from the other costs and 
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assumed to be accrued in the (single) year following the EOH.30It is then 
discounted to the user selected reference year. 

!  The other costs listed above, which are all annual costs, are added to the 
annualized capital cost payments, to form the ANNCOST quantity below. 

 
TIMES then computes for each region a total net present value of the stream of annual 
costs, discounted to a user selected reference year. These regional discounted costs are 
then aggregated into a single total cost, which constitutes the objective function to be 
minimized by the model in its equilibrium computation. 
 

!!
"

#

=

¥+=
YEARSy

yREFYR
yr

R

r

yrANNCOSTdNPV ),()1( ,
1  

 
where: 
 
NPV is the net present value of the total cost for all regions (the TIMES 

objective function); 
ANNCOST(r,y) is the total annual cost in region r and year y; 
dr,y  is the general discount rate; 
REFYR  is the reference year for discounting; 
YEARS is the set of years for which there are costs, including all years in 

the horizon, plus past years (before the initial period) if costs have 
been defined for past investments, plus a number of years after 
EOH where some investment and dismantling costs are still being 
incurred, as well as the Salvage Value; and 

R  is the set of regions in the area of study. 
 
As already mentioned, the exact computation of ANNCOST is quite complex and is 
postponed until section 6.2 of PART II 
 

5.3.4 Variants for the objective function 
 
There are some cases where the standard formulation described above leads to small 
distortions in the cost accounting between capacity-related costs and the corresponding 
activity-related costs. This occurs even without discounting but may be increased by 

                                                
30 The salvage value is thus the only cost element that remains lumped in the TIMES objective function. All 
other costs are annualized. 
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discounting. These distortions may occur at the end of the model horizon, either due to 
excessive or deficient salvage value. 
 
In addition to these cost accounting problems at the end of horizon, the investment 
spreads used in the standard formulation can also lead to other cost distortions, regardless 
of discounting. In very long periods, the investment spreads are divided into Dt 
successive steps, each amounting to 1/Dt of the total capacity to be invested in the period. 
Recall that the full capacity must be in place by the milestone year, in order to allow 
activity to be constant over the period. For example, if the period length Dt is 20 years, 
the investments start already 19 years before the milestone year, and can thus start even 
before the previous milestone year. If the investment costs are changing over time, it is 
clear that in such cases the costs will not be accounted in a realistic way, because the 
investment cost data is taken from the start year of each investment step. 
 
Similarly, in short periods the investment costs are spread over only a few years, and if 
the previous period is much longer, this can leave a considerable gap in the investment 
years between successive periods. Here again, if the investment costs are changing over 
time, this would lead to a distortion in the cost accounting. 
 
Unfortunately, it is a well-known fact that the original choice of defining milestone years 
at or near the middle of each period limits the choice of milestone years, and furthermore 
tends to induce periods that may be very unequal in length, thus exacerbating the 
anomalies mentioned above.  Such variability in period length can increase the cost 
distortions under discounting due to the larger differences in the timing of the available 
capacity (as defined by the investments) and the assumed constant activity levels in each 
period in the original definition of TIMES variables. 
 
These were remedied by making changes in parts of the OBJ cost representation. Four 
options are now available, three of which apply to the original definition of TIMES 
variables, the fourth one applying to the alternate definition of TIMES variables. The 
fourth option (named LIN ) is discussed separately in section 5.5, since it concerns not 
only the objective function but also several constraints.  
 
The three options are as follows: 
 

¥ The original OBJ with minor changes made to it, activated via the OBLONG 
switch. 
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¥ The modified objective function (MOD). The MOD formulation adds only a few 
modifications to the standard formulation: 

¥ The model periods are defined in a different way; and 
¥ The investment spreads in the investment Cases 1a and 1b (see section 6.2 

of Part II for a list of all cases) are defined slightly differently. 
 

¥ The ALT  formulation includes all the modifications made in the MOD 
formulation. In addition, it includes the following further modifications that 
eliminate basically all of the remaining problems in the standard formulation: 

¥ The investment spreads in the investment Case 1b are defined slightly 
differently; 

¥ The capacity transfer coefficients for newly installed capacities are 
defined slightly differently, so that the effective lifetime of technologies is 
calculated taking into account discounting; 

¥ Variable costs are adjusted to be in sync with the available capacity. 
 
It has been observed that these three options yield results that have practically the same 
degree of accuracy and reliability. There is however an advantage to the MOD and ALT 
options, as the milestone years need no longer be at the middle of a period. 
 
Additional details and comments are provided on all three options in technical note 
"TIMES Objective Variants" 
 
Conclusion on the variants: The multiplicity of options may confuse the modeler. 
Extensive experience with their use has shown that the distortions discussed above 
remain quite small. In practice, old TIMES users seem to stick to the classical OBJ with 
the OBLONG switch. And, as mentioned above, using MOD allows the further flexibility 
of freely choosing milestone years. Finally, using the LIN option (described in section 
5.5) is a more serious decision, since it implies a different meaning for the TIMES 
variables; some modelers are more comfortable with this choice, which has also 
implications for the reporting of results. 
 
 

5.4 Constraints 
 
While minimizing total discounted cost, the TIMES model must satisfy a large number of 
constraints (the so-called equations of the model) which express the physical and logical 
relationships that must be satisfied in order to properly depict the associated energy 
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system. TIMES constraints are of several kinds. Here we list and briefly discuss the main 
types of constraints. A full, mathematically more precise description is given in Part II. If 
any constraint is not satisfied, the model is said to be infeasible, a condition caused by a 
data error or an over-specification of some requirement. 
 
In the descriptions of the equations that follow, the equation and variable names (and 
their indexes) are in bold italic type, and the parameters (and their indexes), 
corresponding to the input data, are in regular italic typeset. Furthermore, some 
parameter indexes have been omitted in order to provide a streamlined presentation. 

5.4.1 Capacity transfer (conservation of investments) 
 
Investing in a particular technology increases its installed capacity for the duration of the 
physical life of the technology. At the end of that life, the total capacity for this 
technology is decreased by the same amount. When computing the available capacity in 
some time period, the model takes into account the capacity resulting from all 
investments up to that period, some of which may have been made prior to the initial 
period but are still in operating condition (embodied by the residual capacity of the 
technology), and others that have been decided by the model at, or after, the initial 
period, up to and including the period in question.  
 
The total available capacity for each technology p, in region r, in period t (all vintages),is 
equal to the sum of investments made by the model in past and current periods, and 
whose physical life has not yet ended, plus capacity in place prior to the modeling 
horizon that is still available. The exact formulation of this constraint is made quite 
complex by the fact that TIMES accepts variable time periods, and therefore the end of 
life of an investment may well fall in the middle of a future time period. We ignore here 
these complexities and provide a streamlined version of this constraint. Full details are 
shown in section 6.3.18 of Part II. 
 
EQ_CPT(r,t,p) - Capacity transfer 
 

VAR_CAPT(r,t,p) = Sum{over all periods tÕ preceding or equal to t such 
that 

t-tÕ<LIFE(r,tÕ,p) of VAR_NCAP(r,tÕ,p)}  + RESID(r,t,p)  
 (5-1)  
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where RESID(r,t,p) is the (exogenously provided) capacity of technology 
p due to investments that were made prior to the initial model period and 
still exist in region r at time t.  
 

5.4.2 Definition of process activity variables 
 
Since TIMES recognizes activity variables as well as flow variables, it is necessary to 
relate these two types of variables. This is done by introducing a constraint that equates 
an overall activity variable, VAR_ACT(r,v,t,p,s), with the appropriate set of flow 
variables, VAR_FLO(r,v,t,p,c,s), properly weighted. This is accomplished by first 
identifying the group of commodities that defines the activity (and thereby the capacity as 
well) of the process. In a simple process, one consuming a single commodity and 
producing a single commodity, the modeler simply chooses one of these two flows to 
define the activity, and thereby the process normalization (input or output). In more 
complex processes, with several commodities (perhaps of different types) as inputs 
and/or outputs, the definition of the activity variable requires first to choose the primary 
commodity group (pcg) that will serve as the activity-defining group. For instance, the 
pcg may be the group of energy carriers, or the group of materials of a given type, or the 
group of GHG emissions, etc. The modeler then identifies whether the activity is defined 
via inputs or via outputs that belong to the selected pcg. Conceptually, this leads to the 
following relationship: 
 
EQ_ACTFLO(r,v,t,p,s) Ð Activity definition 
 

VAR_ACT(r,v,t,p,s) = SUM{c in pcg of VAR_FLO(r,v,t,p,c,s) / ACTFLO(r,v p,c)}  
(5-2) 

where ACTFLO(r,v,p,c) is a conversion factor (often equal to 1) from the activity 
of the process to the flow of a particular commodity.  

 

5.4.3 Use of capacity 
 
In each time period the model may use some or all of the installed capacity according to 
the Availability Factor (AF) of that technology. Note that the model may decide to use 
less than the available capacity during certain time-slices, or even throughout one or more 
whole periods, if such a decision contributes to minimizing the overall cost. Optionally, 
there is a provision for the modeler to force specific technologies to use their capacity to 
their full potential.  
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For each technology p, period t, vintage v, region r, and time-slice s, the activity of the 
technology may not exceed its available capacity, as specified by a user defined 
availability factor. 
 
EQ_CAPACT (r,v,t,p,s) - Use of capacity 
 

VAR_ACT (r,v,t,p,s) !  or =  
  AF(r,v,t,p,s)* PRC_CAPACT(r,p))*FR(r,s)*VAR_CAP(r,v,t,p) 

(5-3) 
 
Here PRC_CAPACT(r,p) is the conversion factor between units of capacity and activity 
(often equal to 1, except for power plants). The FR(r,s)parameter is equal to the 
(fractional) duration of time-slice s. The availability factor AF also serves to indicate the 
nature of the constraint as an inequality or an equality. In the latter case the capacity is 
forced to be fully utilized. Note that the CAP(r,v,t,p)"variable" is not explicitly defined in 
TIMES. Instead it is replaced in (5-3) by a fraction (less than or equal to 1) of the 
investment variable VAR_NCAP(r,v,p)31 sum of past investments that are still operating, 
as in equation (5-1).   
 
Example: a coal fired power plantÕs activity in any time-slice is bounded above by 80% 

of its capacity, i.e. VAR_ACT (r,v,t,p,s)  ! 0.8*31.536 * CAP(r,v,t,p), where 
PRC_CAPACT(r,p) = 31.536 is the conversion factor between the units of the capacity 
variable (GW) and the activity-based capacity unit (PJ/a) The activity-based capacity 
unit is obtained from the activity unit(PJ) by division by  a denominator of one year. 
 
The s index of the AF coefficient in equation (5-3) indicates that the user may specify 
time-sliced dependency on the availability of the installed capacity of some technologies, 
if desirable. This is especially needed when the operation of the equipment depends on 
the availability of a resource that cannot be stored, such as wind and sun, or that can be 
only partially stored, such as water in a reservoir. In other cases, the user may provide an 
AF factor that does not depend on s, which is then applied to the entire year. The 
operation profile of a technology within a year, if the technology has a sub-annual 
process resolution, is determined by the optimization routine.  The number of 
EQ_CAPACT constraints is at least equal to the number of time-slices in which the 

                                                
31 That fraction is equal to 1 if the technical life of the investment made in period v fully covers period t. It 
is less than 1 (perhaps 0) otherwise. 



68 
 

equipment operates. For technologies with only an annual characterization the number of 
constraints is reduced to one per period (where s=ÓANNUALÓ). 
 

5.4.4 Commodity balance equation 
 
In each time period, the production by a region plus imports from other regions of each 
commodity must balance the amount consumed in the region or exported to other regions. 

In TIMES, the sense of each balance constraint (!  or =) is user controlled, via a special 
parameter attached to each commodity. However, the constraint defaults to an equality in 
the case of materials (i.e. the quantity produced and imported is exactly equal to that 
consumed and exported), and to an inequality in the case of energy carriers, emissions 
and demands (thus allowing some surplus production). For those commodities for which 
time-slices have been defined, the balance constraint must be satisfied in each time-slice.  
 
The balance constraint is very complex, due to the many terms involving production or 
consumption of a commodity. We present a much simplified version below, to simply 
indicate the basic meaning of this equation. 
 
For each commodity c, time period t (vintage v), region r, and time-slice s (if necessary 
or ÒANNUALÓ if not), this constraint requires that the disposition of each commodity 
balances its procurement. The disposition includes consumption in the region plus 
exports; the procurement includes production in the region plus imports.  
 
EQ_COMBAL(r,t,c,s) - Commodity balance 
 

 

[ Sum {over all p,c " TOP(r,p,c,ÓoutÓ )of: [VAR_FLO(r,v,t,p,c,s) + 

VAR_SOUT(r,v,t,p,c,s)*STG_EFF(r,v,p)] } + 
 

Sum {over all p,c " RPC_IRE(r,p,c,ÓimpÓ) of 
:VAR_IRE(r,t,p,c,s,ÓimpÓ)}+ 
 

Sum {over all p of: Release(r,t,p,c)*VAR_NCAP(r,t,p,c)}]  * 

COM_IE(r,t,c,s) 
 

#  or  =       (5-4) 
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Sum {over all p,c "  TOP(r,p,c,ÓinÓ) of: VAR_FLO(r,v,t,p,c,s) + 
VAR_SIN(r,v,t,p,c,s)} +  
 

Sum {over all p,c"  RPC_IRE(r,p,c,ÓexpÓ)} of:  
VAR_IRE(r,t,p,c,s,ÕexpÓ) +  
 
Sum {over all p of: Sink(r,t,p,c)*VAR_NCAP(r,t,p,c)} +  
FR(c,s) *VAR_DEM(c,t)    
    

where:  
 

The constraint is  !   for energy forms and = for materials and emissions 
(unless these defaults are overridden by the user, see Part II). 

TOP(r,p,c,Óin/outÓ) identifies that there is an input/output flow of 
commodity c into/from process p in region r;  

RPC_IRE(r,p,c,Óimp/expÓ) identifies that there is an import/export flow 
into/from region r of commodity c via process p; 

STG_EFF(r,v,p) is the efficiency of storage process p; 
COM_IE(r,t,c) is the infrastructure efficiency of commodity c; 
Release(r,t,p,c) is the amount of commodity c recuperated per unit of 

capacity of process p dismantled (useful to represent some materials or 
fuels that are recuperated while dismantling a facility); 

Sink(r,t,p,c) is the quantity of commodity c required per unit of new 
capacity of process p (useful to represent some materials or fuels 
consumed for the construction of a facility); 

FR(s) is the fraction of the year covered by time-slice s (equal to 1 for 
non- time-sliced commodities).  

 
Example: Gasoline consumed by vehicles plus gasoline exported to other regions must 
not exceed gasoline produced from refineries plus gasoline imported from other regions. 
 

5.4.5 Defining flow relationships in a process 
 
A process with one or more (perhaps heterogeneous) commodity flows is essentially 
defined by one or more input and output flow variables. In the absence of relationships 
between these flows, the process would be completely undetermined, i.e. its outputs 
would be independent from its inputs. We therefore need one or more constraints stating 
in a most general case that the ratio of the sum of some of its output flows to the sum of 
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some of its input flows is equal to a constant. In the case of a single commodity in, and a 
single commodity out of a process, this equation defines the traditional efficiency of the 
process. With several commodities, this constraint may leave some freedom to individual 
output (or input) flows, as long as their sum is in fixed proportion to the sum of input (or 
output) flows. An important rule for this constraint is that each sum must be taken over 
commodities of the same type (i.e. in the same group, say: energy carriers, or emissions, 
etc.). In TIMES, for each process the modeler identifies the input commodity group cg1, 
and the output commodity group cg2, and chooses a value for the efficiency ratio, named 
FLO_FUNC(p,cg1,cg2). The following equation embodies this: 
 
EQ_PTRANS(r,v,t,p,cg1,cg2,s) ÐEfficiency definition 
 

SUM{c in cg2 of : VAR_FLO(r,v,t,p,c,s )}=  

 

FLO_FUNC(r,v,cg1,cg2,s) * SUM{c within cg1 of: 

COEFF(r,v,p,cg1,c,cg2,s)*VAR_FLO(r,v,t,p,c,s)}  (5-5) 

 
where COEFF(r,v,p,cg1,c,cg2,s) takes into account the harmonization of different 
time-slice resolution of the flow variables, which have been omitted here for 
simplicity, as well as commodity-dependent transformation efficiencies. 

 

5.4.6 Limiting flow shares in flexible processes 
 
When either of the commodity groupscg1 or cg2 contains more than one element, the 
previous constraint allows a lot of freedom on the values of flows. The process is 
therefore quite flexible. The flow share constraint is intended to limit the flexibility, by 
constraining the share of each flow within its own group. For instance, a refinery output 
might consist of three refined products: c1=light, c2=medium, and c3=heavy distillate. If 
losses are 9% of the input, then the user must specify FLO_FUNC = 0.91 to define the 
overall efficiency. The user may then want to limit the flexibility of the slate of outputs 
by means of three FLO_SHAR(ci) coefficients, say 0.4, 0.5, 0.6, resulting in three flow 
share constraints as follows (ignoring some indices for clarity): 
 

VAR_FLO(c1) !   0.4*[VAR_FLO(c1) + VAR_FLO(c2) + VAR_FLO(c3)], so that c1 
is at most 40% of the total output, 

VAR_FLO(c2) !   0.5*[VAR_FLO(c1) + VAR_FLO(c2) + VAR_FLO(c3)], so that c2 
is at most 50% of the total output, 
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VAR_FLO(c3) !   0.6*[VAR_FLO(c1) + VAR_FLO(c2) + VAR_FLO(c3)], so that c3 
is at most 60% of the total output, 

 
The general form of this constraint is: 
 
EQ_INSHR(c,cg,p,r,t,s) and EQ_OUTSHR(c,cg,p,r,t,s) 
 

VAR_FLO(c)! ,#, =   
FLO_SHAR(c) * Sum {over all cÕ in cg of: VAR_FLO(cÕ) } (5-6) 

 
The commodity group cg may be on the input or output side of the process. 
 
A recent modification of TIMES simplifies the above constraints by allowing the use of 
the VAR_ACT variable instead of the sum of VAR_FLO variables in equation (5-6) or in 
similar ones. This simplification is triggered when the user defines the new attribute 
ACT_FLO, which is a coefficient linking a flow to the activity of a process. Furthermore, 
commodity c appearing in left-hand-side of the constraint may even be a flow that is not 
part of the cg group. 
 
Warning: It is quite possible (and regrettable) to over specify flow related equations such 
as (5-6), especially when the constraint is an equality. Such an over specification leads to 
an infeasible LP. A new feature of TIMES consists in deleting some of the flow 
constraints in order to re-establish feasibility, in which case a warning message is issued. 
 

5.4.7 Peaking reserve constraint (time-sliced commodities only) 
 
This constraint imposes that the total capacity of all processes producing a commodity at 
each time period and in each region must exceed the average demand in the time-slice 
where peaking occurs by a certain percentage. This percentage is the Peak Reserve 
Factor, COM_PKRSV(r,t,c,s), and is chosen to insure against several contingencies, such 
as: possible commodity shortfall due to uncertainty regarding its supply (e.g. water 
availability in a reservoir); unplanned equipment down time; and random peak demand 
that exceeds the average demand during the time-slice when the peak occurs. This 
constraint is therefore akin to a safety margin to protect against random events not 
explicitly represented in the model. In a typical cold country the peaking time-slice for 
electricity (or natural gas) will be Winter-Day, and the total electric plant generating 
capacity (or gas supply plant) must exceed the Winter-Day demand load by a certain 
percentage. In a warm country the peaking time-slice may be Summer-Day for electricity 
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(due to heavy air conditioning demand). The user keeps full control regarding which 
time-slices have a peaking equation.  
 
For each time period t and for region r, there must be enough installed capacity to exceed 
the required capacity in the season with largest demand for commodity c by a safety 
factor E called the peak reserve factor.  
 
EQ_PEAK(r,t,c,s) - Commodity peak requirement 
 

Sum {over all p producing c with c=pcg of PRC_CAPACT(r,p) * Peak(r,v,p,c,s) 
* FR(s) *VAR_CAP(r,v,t,p) * VAR_ACTFLO(r,v,p,c) } +   
 
Sum {over all p producing c with c≠pcg of  

NCAP_PKCNT(r,v,p,c,s) *VAR_FLO(r,v,t,p,c,s)} +VAR_IRE(r,t,p,c,s,i) 
 

#      (5-7) 
 
[1+  COM_PKRSV(r,t,c,s)] * [  Sum {over all p consuming c of 
VAR_FLO(r,v,t,p,c,s) +VAR_IRE(r,t,p,c,s,e)} ]       

 
 

where: 
 
COM_PKRSV(r,t,c,s) is the region-specific reserve coefficient for 

commodity c in time-slice s, which allows for unexpected down time 
of equipment, for demand at peak, and for uncertain resource 
availability, and  

 
NCAP_PKCNT(r,v,p,c,s) specifies the fraction of technology pÕs capacity 

in a region r for a period t and commodity c (electricity or heat only) 
that is allowed to contribute to the peak load in slice s; many types of 
supply processes are predictably available during the peak and thus 
have a peak coefficient equal to 1, whereas others (such as wind 
turbines or solar plants in the case of electricity) are attributed a peak 
coefficient less than 1, since they are on average only fractionally 
available at peak (e.g., a wind turbine typically has a peak coefficient 
of .25 or .3, whereas a hydroelectric plant, a gas plant, or a nuclear 
plant typically has a peak coefficient equal to 1). 
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For simplicity it has been assumed in (5-7) that the time-slice resolution of the 
peaking commodity and the time-slice resolution of the commodity flows (FLO, 
TRADE) are the same. In practice, this is not the case and additional conversion 
factors or summation operations are necessary to match different time-slice levels. 
 
Remark: to establish the peak capacity, two cases must be distinguished in 
constraint EQ_PEAK.  
  Ð For production processes where the peaking commodity is the only commodity 
in the primary commodity group (denoted c=pcg), the capacity of the process may 
be assumed to contribute to the peak.  
  Ð For processes where the peaking commodity is not the only member of the 
pcg, there are several commodities included in the pcg. Therefore, the capacity as 
such cannot be used in the equation. In this case, the actual production is taken 
into account in the contribution to the peak, instead of the capacity. For example, 
in the case of CHP only the production of electricity contributes to the peak 
electricity supply, not the entire capacity of the plant, because the activity of the 
process consists of both electricity and heat generation in either fixed or flexible 
proportions, and, depending on the modeler's choice, the capacity may represent 
either the electric power of the turbine in condensing or back-pressure mode, or 
the sum of power and heat capacities in back-pressure mode. There is therefore a 
slight inconsistency between these two cases, since in the first case, a technology 
may contribute to the peak requirement without producing any energy, whereas 
this is impossible in the second case. 

 
Note also that in the peak equation (5-7), it is assumed that imports of the commodity are 
contributing to the peak of the importing region (thus, exports are implicitly considered to 
be of the firm power type).  
 

5.4.8 Constraints on commodities 
 
In TIMES variables are optionally attached to various quantities related to commodities, 
such as total quantity produced. Therefore it is quite easy to put constraints on these 
quantities, by simply bounding the commodity variables in each period. It is also possible 
to impose cumulative bounds on commodities over more than one period, a particularly 
useful feature for cumulatively bounding emissions or modeling reserves of fossil fuels.  
By introducing suitable naming conventions for emissions the user may constrain 
emissions from specific sectors. Furthermore, the user may also impose global emission 
constraints that apply to several regions taken together, by allowing emissions to be 
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traded across regions. Alternatively or concurrently a tax or penalty may be applied to 
each produced (or consumed) unit of a commodity (energy form, emission), via specific 
parameters. 
 
A specific type of constraint may be defined to limit the share of process (p) in the total 
production of commodity (c). The constraint indicates that the flow of commodity (c) 
from/to process (p) is bounded by a given fraction of the total production of commodity 
(c).  In the present implementation, the same given fraction is applied to all time slices. 
 

5.4.9 User constraints 
 
In addition to the standard TIMES constraints discussed above, the user may create a 
wide variety of so-called User Constraints (UC's), whose coefficients follow certain rules. 
Thanks to recent enhancements of the TIMES code, user defined constraints may involve 
virtually any TIMES variable. For example, there may a user-defined constraint limiting 
investment in new nuclear capacity (regardless of the type of reactor), or dictating that a 
certain percentage of new electricity generation capacity must be powered by a portfolio 
of renewable energy sources. User constraints may be employed across time periods, for 
example to model options for retrofitting existing processes or extending their technical 
lives. A frequent use of UC's involves cumulative quantities (over time) of commodities, 
flows, or process capacities or activities. Recent TIMES code changes make the 
definition of the right-hand-sides of such UC's fairly independent of the horizon chosen 
for the scenario, and thus make it unnecessary to redefine the RHS's when the horizon is 
changed. 
 
In order to facilitate the creation of a new user constraint, TIMES provides a template for 
indicating a) the set of variables involved in the constraint, and b) the user-defined 
coefficients needed in the constraint.  
 
The details of how to build different types of UC are included in section 6.4 of Part II of 
the documentation. 
 

5.4.10 Growth constraints 
 
These are special cases of UC's that are frequently used to maintain the growth (or the 
decay) of the capacity of a process within certain bounds, thus avoiding excessive abrupt 
investment in new capacity. Such bounding of the growth is often justified by the reality 
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of real life constraints on technological adoption and evolution. The user is however 
advised to exert caution on the choice of the maximum rates of technological change, the 
risk being to restrict it too much and thus "railroad" the model.  
 
Typically, a growth constraint is of the following generic form (ignoring several indices 
for clarity: 
 

!"# !!"# ! ! ! ! ! ! ! ! !"#$%& ! !!! !! ! ! !"# !!"# ! ! ! ! !       (5-8) 

 
The GROWTH coefficient is defined as a new attribute of the technology, and represents 
the maximum annual growth allowed for the capacity. The quantity M(t+1)-M(t) is the 
number of years between the milestones of periods t and t+1. The constant K is useful 
whenever the technology has no capacity initially, in order to allow capacity to build over 
time (if K were absent and initial capacity is zero, the technology would never acquire 
any capacity) 
 
Note that the sign of the constraint may also be of the "larger than or equal to" type to 
express a maximum rate of abandonment, in which case the "+" sign is replaced by a "Ð" 
sign in the right-hand-side of the constraint. Equality is also allowed, but must be used 
only exceptionally in order to avoid railroading of the model. 
 

5.4.11 Early retirement of capacity 
 
With this new TIMES feature the user may allow the model to retire some technologies 
before the end of their technical lives. The retirement may be continuous or discrete. In 
the former case, the model may retire any amount of the remaining capacity (if any) at 
each period. In the latter case, the retirement may be effected by the model either in a 
single block (i.e. the remaining capacity is completely retired) or in multiples of a user 
chosen block. Please refer to chapter 10 of this document The lumpy investment option, 
for additional discussion of the mathematical formulation of MIP problems. 
 
This feature requires the definition of three new constraints, as listed and briefly 
described in table 5.1, as well as the alteration of many existing constraints and the 
objective function, as described in table 5.2 Part II and the special separate note TIMES 
Early Retirement of Capacity provide additional detail.  
 
The user is advised to use the discrete early retirement feature sparingly, as it implies the 
use of mixed integer programming optimizer, rather than the computationally much more 
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efficient linear programming optimizer. The user should also be aware that using the 
discrete option voids some of the economic properties of the equilibrium, as discussed in 
section 10.3. 
 
New Equation Description 
EQ_DSCRET(r,v,t,p) 
 

Discrete retirement equation for process p and vintage v in 
region r  and period t. 
Plays an analogous role to equation EQ_DSCNCAP in the 
Discrete Capacity Investment Extension. 

EQ_CUMRET(r,v,t,p) 
 

Cumulative retirement equation for process p and vintage v 
in region r  and period t. 

EQL_SCAP(r,t,p,ips) 
 

Maximum salvage capacity constraint for process p in 
region r  and period t, defined for ips = N (unless 
NCAP_OLIFE is specified). 

Table 5.1. The new constraints required to implement early retirement of capacity 
 
Existing Equation Equation Description Purpose of Modification 
EQ_OBJFIX Fixed cost component of 

objective function 
To credit back the fixed costs of the 
capacity that is retired early 

EQ_OBJVAR Variable cost component of 
objective function 

To reflect the effect of capacity that is 
retired early in the costs of capacity-related 
flows 

EQ_OBJSALV Salvage cost component of 
objective function 

To subtract the salvage value (if any) of 
capacity that is retired early 

EQ(l)_CPT  
for l = L, E, G 

Capacity transfer equation To reflect the effect of capacity that is 
retired early 

EQ(l)_CAPACT  
for l = L, E, G 

Capacity utilization equation To reflect the effect of capacity that is 
retired early 

EQ(l)_CAFLAC 
for l = L, E 

Commodity based availability 
constraint 

To reflect the effect of capacity that is 
retired early 

EQ(l)_COMBAL 
for l = G, E 

Commodity balance equation To reflect the effect of capacity that is 
retired early in capacity-related flows 

EQ_PEAK Commodity peaking 
constraint 

To subtract the peak contribution of 
capacity that is retired early 

EQ(l)_UC* 
for l = L, E, G 

The FLO component of all 
user constraints 

To reflect the effect of capacity that is 
retired early in capacity-related flows 

EQ(l)_MRKCON 
for l = L, E, G 

Market share of flow in the 
consumption of a commodity 

To reflect the effect of capacity that is 
retired early in capacity-related flows 

EQ(l)_MRKPRD 
for l = L, E, G 

Market share of flow in the 
production of a commodity 

To reflect the effect of capacity that is 
retired early in capacity-related flows 

Table 5.2. List of existing constraints that are affected by the early retirement option. 
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5.4.12 Electricity grid modeling 
 
The electricity sector plays a central role in any energy model, and particularly so in 
TIMES. The electricity commodity has features that present particular challenges for its 
representation, in that it is difficult to store, and requires a network infrastructure to be 
transported and delivered. The considerable development of new renewable electricity 
generation technologies adds to the complexity, inasmuch as the technical requirements 
of integrating interruptible generation facilities (such as wind turbines and solar plants) to 
a set of traditional plants, must be satisfied for the integration to be feasible. Such 
considerations become even more relevant in large regions or countries, where the 
distances between potential generation areas and consumption areas are quite large.   
 
Such considerations have led to the introduction of an optional grid modeling feature into 
the TIMES model's equations. A grid consists in a network of nodes linked by arcs (or 
branches). Each node may represent a well-defined geographic area that is deemed 
distinct from other areas of the region, either because of its generation potential (e.g. a 
windy area suitable for wind farms) and/or because of a concentration of points of 
consumption of electricity (e.g. a populated area separated from other populated areas or 
from generation areas.) 
 
The purpose of this section is to indicate the broad principles and characteristics of the 
grid representation feature in TIMES. The modeler wishing to implement the feature is 
urged to read to the detailed Technical Note ÒTIMES Grid modeling featureÓ, which 
contains the complete mathematical derivations of the equations, and their 
implementation in TIMES. What follows is a much streamlined version outlining only 
the main approach and ignoring the many details of the mathematical equations. 
 
5.4.12.1 A much simplified sketch of the grid constraints 
 
The traditional way to represent the nodes and arcs of a grid is shown in figure 5.3, where 
each node is shown as a horizontal segment, and the nodes are connected via bi-
directional arcs. 
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Figure 5.3. Connection of a grid node with other nodes 
 
 
The basic energy conservation equation of a grid is as follows: 
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for each i=1,2,...,M 
where: 
 

M = the number of nodes connected with node i 
Gi = active power injected into node i by generators 
Li  = active power withdrawn from node i by consumer loads 
Pij  = branch flow from node i to node j 

 
As mentioned above, these constraints are then modified so as to include important 
technical requirements on the electrical properties (reactance and phase angle) of each 
line. Suffice it to say here that the resulting new equations remain linear in the flow and 
other variables. 
 
5.4.12.2 Integrating grid equations into TIMES 
 
It should be clear that the variables Gi and Li must be tightly related to the rest of the 
TIMES variables that concern the electricity commodities. In fact, the modeler must first 
decide on an allocation of the set of generation technologies into M subsets, each subset 
being attached to a node of the grid. Similarly, the set of all technologies that consume 
electricity must also be partitioned into M subsets, each attached to a node. These two 
partitions are effected via new parameters specifying the fractions of each generation type 
to be allocated to each grid node, and similarly for the fractions of each technology 
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consuming electricity to be allocated to grid each node.  This indeed amounts to a partial 
regionalization of the model concerning the electricity sector. Thus, variables Gi and Li  
are defined in relation to the existing TIMES variables. 
 
Of course, the introduction of the grid requires modifying the electricity balance 
equations and peak equations, via the introduction of the net total flow variables the set of 
grid nodes. The electricity balance equations are modified for each time slice defined for 
electricity. 
 
Finally, additional a security constraint is added in the case of a multi-regional model, 
expressing that the total net export or import of electricity from region r does not exceed 
a certain (user-defined) fraction of the capacity of the portion of the grid linking region r 
to other regions.  
 
5.4.12.3 Costs 
 
New costs attached to the grid are also modeled, and form a new component of the 
objective function for the region. For this, a new cost coefficient is defined and attached 
to each node of the grid. TIMES multiplies this cost coefficient by the proper new grid 
variables and discounts the expression in order to form the new OBJ component. 
 

5.4.13 Reporting "constraints" 
 
These are not constraints proper but expressions representing certain quantities useful for 
reporting, after the run is completed. They have no impact on the optimization. We have 
already mentioned CAP(r,v,t,p), which represents the capacity of a process by vintage.  
 
One sophisticated expression reports the levelized cost (LC) of a process. A process's LC 
is a life cycle quantity that aggregates all costs attached to a process, whether explicit or 
implicit. It is a useful quantity for ranking processes. However, such a ranking is 
dependent upon a particular model run, and may vary from run to run. This is so because 
several implicit costs attached to a process such as the cost of fuels used or produced, and 
perhaps the cost of emissions, are run dependent.  
 
The general expression for the levelized cost of a process is as follows: 
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where 

¥ r  =  discount rate (e.g. 5%) 

¥ ICt = investment expenditure in (the beginning of) year t 
¥ OCt = fixed operating expenditure in year t 

¥ VCt = variable operating expenditure in year t 
¥ FCit = fuel-specific operating expenditure for fuel i in year t 

¥ FDit = fuel-specific acquisition expenditure for fuel i in year t 
¥ EDjt = emission-specific allowance expenditure for emission j in year t (optional) 

¥ BDkt = revenues from commodity k produced by the process in year t (optional;) 

¥ MOmt = output of main product m in year t, i.e. a member of the pcg 
 
Comments: 
 
Each cost element listed above is obtained by multiplying a unit cost by the value of the 
corresponding variable indicated in the run results. 
 
The unit values of the first four costs are simply equal the process input data, i.e. the unit 
investment cost, the fixed unit O&M cost, the unit variable operating cost, and the unit 
delivery cost. The last three costs are the shadow prices of the commodities concerned, 
endogenously obtained as the dual solution of the current model run.  
 
Note also that the user may choose to ignore the last two costs or to include them. 
Furthermore, concerning the last cost (which is indeed a revenue), the user may decide to 
ignore the revenue from the main commodities produced by the process and retain only 
the revenues from the by-products. The choice is specified via the parameter 
RPT_OPT(ÔNCAPÕ,Õ1Õ). Technical note "Levelized costs-TIMES" provides details on the 
parameter values. 
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5.5 The 'Linear'  variant of TIMES 
 
This alternate TIMES formulation (called the LIN variant) assumes a different meaning 
for the activity and flow variables of TIMES. More precisely, instead of assuming that 
flows and activities are constant in all years within the same period, the variant assumes 
that the flow and activity variables apply to only one milestone year within each period. 
The variables' values at other years of a period are interpolated between successive 
milestone years' values. See section 5.2 for a figure depicting the two alternate 
definitions. 
 
Choosing the LIN formulation affects the variable costs in the objective function as well 
as all dynamic constraints involving activities or flows. Note also that the LIN variant 
avoids the cost distortions mentioned in section 5.3.1. 
 
Significant modifications in the LIN formulation concern the variable cost accounting, 
since the latter are no longer constant in all years of any given period, but evolve linearly 
between successive milestone years. The objective function components for all variable 
costs have been modified accordingly. 
 
The following further modifications are done in the LIN formulation: 
 

¥ The cumulative constraints on commodity production (EQ(l)_CUMNET and 
EQ(l)_CUMPRD) are modified to include linear interpolation of the commodity 
variables involved; 

¥ The cumulative constraints on commodity and flow taxes and subsidies 
(EQ(l)_CUMCST) are modified to include linear interpolation of the commodity and 
flow variables involved; 

¥ The dynamic equations of the Climate module are modified to include linear 
interpolation of the variables involved; 

¥ The inter-period storage equations are modified to include linear interpolation of the 
flow variables involved; 

¥ The cumulative user constraints for activities and flows are also modified in a similar 
manner. 

¥ Note that in the LIN formulation the activity of inter-period storage equations is 
measured at the milestone year (in the standard formulation it is measured at the end 
of each period). In addition, new EQ_STGIPS equations are added to ensure that the 
storage level remains non-negative at the end of each period. (Without these 
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additional constraints, the linear interpolation of storage could lead to a negative 
storage level if the period contains more than a single year.) 
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6 Parametric analysis with TIMES 
 
Dealing with uncertainty in modeling is a complex endeavour that may be accomplished 
via a number of (sometimes widely different) approaches. In the case of TIMES, two 
different features are available: Stochastic Programming (treated in chapter 8) and 
parametric analysis, also known as sensitivity analysis, which is the subject of this 
chapter. In sensitivity analysis, the values of some important exogenous assumptions are 
varied, and a series of model runs is performed over a discrete set of combinations of 
these assumptions. Sensitivity analysis is often combined with tradeoff analysis, where 
the tradeoff relation between several objectives is analyzed.  
 
The uncertain attributes are similar to the corresponding standard TIMES attributes, but 
they may now have different values according to the different states-of-the-world 
(SOW), just as in the case of stochastic programming. The difference between the two 
approaches is that sensitivity analysis solves a sequence of instances, each assuming 
different values of the uncertain parameters, whereas stochastic programming solves a 
single instance that encompasses all potential values of the uncertain parameters 
simultaneously. 
 
In TIMES, sensitivity analysis and tradeoff analysis facility are implemented using the 
same setup and some of the attributes of the stochastic mode of TIMES, since both 
approaches, although conceptually different, use the same state of the world construct. 
 
Here are a few possible set-ups for sensitivity and tradeoff analyses in TIMES, all of 
which are supported by the model generator: 
 
A. Single phase sensitivity analysis over the set of SOWs. Each run corresponds to a set 

of values for the uncertain parameters. The runs are mutually independent. This is the 
most straightforward approach; 

B. Two-phase tradeoff analysis, where the model is first run using a user-defined 
objective function, and then the TIMES objective function is used in phase 2, while 
the solution from the first phase is used for defining additional constraints in a series 
of model runs in the second phase. 

C. Multiphase tradeoff analysis over N phases, which is a generalization of the two-
phase case. 
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Analyzing tradeoffs between the standard objective function and some other possible 
objectives (for which the market is not able to give a price) was not possible in an 
effective way with earlier versions of TIMES.  
 
 

6.1 Two-phase tradeoff analysis 
In the first phase of the TIMES two-phase tradeoff analysis facility, the objective 
function is user defined as a weighted sum of any number of components, each 
component being a user constraint's left-hand-side. All UC's must be of the global type, 
(i.e. aggregated over regions and periods). Optionally, each of the component UCs may 
also be constrained by upper/lower bounds. The components are defined by the user, via 
the specification of non-zero weight coefficients for the UC's to be included in the 
objective. The original objective function (total discounted costs) is automatically pre-
defined as a non-constraining user constraint with the name ÔOBJZÕ, and can therefore 
always be directly used as one of the component UCs, if desired. 
 
Consequently, the first phase can be considered as representing a Utility Tradeoff Model, 
which can also be used as a stand-alone option. If used in a stand-alone manner, it 
constitutes a case of multi-criterion decision making (see e.g. Weistroffer, 2005). The 
resulting objective function to be minimized can be written as follows: 
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where: 
W(uc) = weight of objective component uc in Phase 1 
LHS(uc) = LHS expression of user constraint uc according to its definition 
UC_GLB =  the set of all global UC constraints (including ÔOBJZÕ) 

 
In the second phase of the TIMES two-phase tradeoff analysis facility the objective 
function is always the original objective function in TIMES, i.e. the total discounted 
system cost (this ensures that the second phase solution produce an economically 
meaningful set of values for the dual variables.) 
 
In addition, in the second phase the user can specify bounds on fractional deviations in 
the LHS values of any or all user constraints, in comparison to the optimal LHS values 
obtained in the first phase. Such deviation bounds can be set for both global and non-
global constraints, and for both non-constraining and constrained UCs (however, any 
original absolute bounds are overridden by the deviation bounds). The objective function 
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used in Phase 1 is also available as an additional pre-defined UC, named ÔOBJ1Õ, so that 
one can set either deviation bounds or absolute bounds on that as well, if desired. In 
addition, both the total and regional original objective functions can be referred to by 
using the predefined UC name ÔOBJZÕ in the deviation bound parameters. 
 
The objective function to be minimized in the second phase, and the additional bounds on 
the LHS values of UCs, can be written as follows: 
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where: 

LHS(ÔOBJZÕ) =  the standard objective function (discounted total system costs) 
LHS(uc)  =  LHS expression of user constraint uc according to its definition 
LHS*(uc)  =  optimal LHS value of user constraint uc in Phase 1 
maxdev(uc) =  user-specified fraction defining the maximum proportional  

 deviation in the value of LHS(uc) compared to the solution in 
Phase 1 

 
Remarks:  
 

1. Use of the two-phase tradeoff analysis facility requires that a weight has been 
defined for at least one objective component in the first phase.  

2. If no deviation bounds are specified, the second phase will be omitted. 
3. Automatic discounting of any commodity or flow-based UC component is 

possible by using a new UC_ATTR option ÔPERDISCÕ which could be applied 
e.g. to the user-defined objective components in Phase 1. 

4. The two-phase tradeoff analysis can be carried over a set of distinct cases, each 
identified by a unique SOW index. 

 
 

6.2 Multiphase tradeoff analysis 
 
The multiphase tradeoff analysis is otherwise similar to the two-phase analysis, but in this 
case the objective function can be defined in the same way as in the Phase 1 described 
above also in all subsequent phases. The different objective functions in each phase are 
distinguished by using an additional phase index (the SOW index). Deviation bounds can 
be specified in each phase, such that they will be in force over all subsequent phases (any 
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user constraints), or only in some of the succeeding phases (any user constraints 
excluding OBJ1). The deviation bounds defined on any of the user-defined objectives 
OBJ1 will thus always be preserved over all subsequent phases. 
 
Remark: Although the multiphase tradeoff analysis allows the use of any user-defined 
objective functions in each phase, it is highly recommended that the original objective 
function be used in the last phase, so that the economic meaning is maintained in the final 
solution. 
 
The procedure was presented in a very general form, in order to let the user exert her 
ingenuity at will. Typical simple examples of using the feature may be useful. 
 
Example 1: trade-off between cost and risk.  
 
First, a special UC (call it RISK) is defined that expresses a global risk measure. The 
successive phases consist in minimizing the following parameterized objective: 
 

!"# !!"#$ ! !! ! !"#$  
 
where " is a user chosen coefficient that may be varied within a range to explore an entire 
trade-off curve such as illustrated in figure 6.1, where the vertical axis represents the 
values of the cost objective function, and the horizontal axis the risk measure. 
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Figure 6.1. Trade-off between Risk and Cost 
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OBJZ* is the lowest value for OBJZ, corresponding to a relatively large value R0 for 
RISK, i.e. when " = 0. As " increases, RISK decreases and OBJZ increases. In this 
example, 4 alternate values of " were chosen until the value of OBJZ becomes very large, 
at point (R4,OBJZ4). This would correspond to very large value for ", i.e. a point where 
RISK is minimized.  
 
An example of such an analysis is fully developed in Kanudia et al (2013), where a risk 
index is constructed to capture an indicator of energy security for the European Union. A 
complex (but linear) risk measure was developed to evaluate the risk for a large number 
of alternative channels of energy imports into the EU, and the trade-off between risk and 
overall cost was explored. 
 
Example 2: exploring the opportunity cost of the nuclear option 
 
At phase 1, the original OBJZ is minimized with the habitual TIMES constraints. This 
results in an optimal cost OBJZ*. At phase 2, the objective function is equal to the total 
nuclear capacity over the entire horizon and over all regions, and a new constraint is 
added as follows: 
 

!"#$ ! ! ! ! ! ! !"#$ !  
 
The " parameter may be varied to explore the entire trade-off curve. A last phase may 
also be added at the end, with OBJZ as objective function, and a user selected value for 
the maximum level of nuclear capacity. 
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7 The TIMES Climate Module 
 
This chapter provides a detailed description of the theoretical approach taken to model 
changes in atmospheric greenhouse gas concentrations, radiative forcing, and global 
mean temperatures in the TIMES Climate Module. Appendix A of Part II contains a full 
description of the implementation of the Climate Module in TIMES, including 
parameters, variables, and equations, as represented in the TIMES code. 
 
The Climate Module starts from global emissions of CO2, CH4, and N2O, as generated 
by the TIMES global model, and proceeds to compute successively: 
 

¥ the changes in CO2, CH4, and N2O concentrations via three separate sets of 
equations; 

¥ the total change (over pre-industrial times) in atmospheric radiative forcing 
resulting from the three gases plus an exogenously specified additional forcing 
resulting from other causes (other anthropogenic and/or natural causes, as defined 
by the user), and  

¥ the temperature changes (over pre-industrial times) in two reservoirs (surface and 
deep ocean).  

 
The climate equations used to perform these calculations were adapted from Nordhaus 
and Boyer (1999), who proposed a three reservoir model for the CO2 cycle only32. This 
leads to linear recursive equations for calculating CO2 concentrations in each reservoir. 
The temperature equations use a two-reservoir model leading also to linear equations. 
The forcing equation is the one used in most climate models, and is non-linear. 
 
In TIMES, we have modeled separately the life cycles of two other GHGÕs besides CO2, 
namely methane and nitrous oxide. These linear equations give results that are good 
approximations of those obtained from more complex climate models (Drouet et al., 
2004; Nordhaus and Boyer, 1999).  
 
The non-linear radiative forcing equation used in virtually all climate models was 
replaced in TIMES by a linear approximation whose values closely approach the exact 
ones as long as the useful range is carefully selected. This was done in order to keep the 

                                                
32Other important GHGÕs such as CH4 and N2O may either be expressed in CO2-equivalent, or a special 
exogenous forcing term may be added to CO2 forcing. The latter approach is not attractive as it keeps two 
major GHGÕs fully exogenous. 
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entire model linear, and therefore to allow the user to set constraints on forcing and on 
temperature as well as on concentrations and on emissions. 
 
The temperature equations have been kept as in Nordhaus and Boyer. 
 
We now describe the mathematical equations used at each of the three steps of the 
climate module. 
 
 

7.1 Concentrations (accumulation of CO2, CH4, N2O33) 
 
a) CO2 accumulation is represented as the linear three-reservoir model below: the 
atmosphere, the quickly mixing upper ocean + biosphere, and the deep ocean. CO2 flows 
in both directions between adjacent reservoirs. The 3-reservoir model is represented by 
the following 3 equations when the step of the recursion is equal to one year: 
 
Matm (y) = E(y) + (1 Ð " atm-up) Matm (y-1) +" up-atm Mup (y-1)    (7-1) 
Mup (y)  = (1 Ð" up-atm Ð " up-lo) Mup (y-1) + " atm-up Matm (y-1) + " lo-up Mlo (y-1) (7-2) 
Mlo (y)  = (1Ð " lo-up) Mlo (y-1) + " up-lo Mup (y-1)     (7-3) 
 
with  

¥ Matm(y), Mup(y), Mlo(y): Concentration (expressed in mass units) of CO2 in 
atmosphere, in a quickly mixing reservoir representing the upper level of the 
ocean and the biosphere, and in deep oceans (GtC), respectively, in year y (GtC) 

¥ E(y) = CO2  emissions in year y (GtC) 

¥ #ij , transport rate from reservoir i to reservoir j (i, j = atm, up, lo) from year y-1 to 
y 

 
b) CH4 accumulation is represented by a so-called single-box model in which the 
atmospheric methane concentration obeys the following equations assuming a constant 

annual decay rate of the anthropogenic concentrations 4CH!  (whereas the natural 

concentration is assumed in equilibrium): 
 

)47()()1(4)1()(4 44 !+!"#!= yEAyCHyCH CHatmCHatm  
 

)57()1(4)(4 !!= yCHyCH upup  
                                                
33 In keeping with the literature, we have expressed all concentrations as masses in megatonnes. 
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!" ! !"! ! ! ! ! !" ! !"# ! ! ! ! !" ! !" ! ! !    (7 - 6) 

 
where 

¥ CH4atm ,, CH4up ,CH4tot, , and EACH4 are respectively: the anthropogenic 
atmospheric concentration, the natural atmospheric concentration34, the total 
atmospheric concentration (all three expressed in Mt), and the anthropogenic 
emission of CH4 (expressed in Mt/yr). The anthropogenic emissions EACH4 
are generated within the model and enter the dynamic equation (7-4) in order 
to derive the anthropogenic concentration. Note that the natural concentration 
CH4upis constant at all times. (See initial values for these and other parameters 
in Part II, Appendix A.) 

¥ CH4tot is then reported and used in the forcing equations. All quantities are 
indexed by year. 

¥ 41 CH!" is the one-year retention rate of CH4 in the atmosphere. 

¥ dCH4 =2.84 (the density of CH4, expressed in Mt/ppbv) is then used to convert 
concentration in Mt into ppbv for reporting purposes. 

 
c) N2O accumulation is also represented by a single-box model in a manner entirely 
similar to CH4, although with different parameter values. The corresponding equations 
are as follows: 
 
N2Oatm(y) = (1! " N2O)#N2Oatm(y! 1)+ EAN2O(y)

N2Oup(y) = N2Oup(y! 1)

N2Otot (y) = N2Oup(y)+ N2Oatm(y)  
 
 

7.2 Radiative forcing 
 
We assume, as is routinely done in atmospheric science, that the atmospheric radiative 
forcings caused by the various gases are additive (IPCC, 2007). Thus: 
 

                                                
34Note that the subscripts atm and up, which for the CO2 equations referred to the atmosphere and upper 
reservoirs, have been reused for the CH4 and N2O equations to stand for anthropogenic and natural 
concentrations.  
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! F(y) = ! FCO2(y)+ ! FCH 4(y)+ ! FN2O(y)+ EXOFOR(y) (7" 7)  

 
We now explain these four terms. 
 

a) The relationship between CO2 accumulation and increased radiative forcing, $FCO2(y), 
is derived from empirical measurements and climate models (IPCC 2001 and 2007).  
 

" FCO2(y) = # *  
ln(Matm(y) M0)

ln2
 

 
where:  

¥ M0 (i.e.CO2ATM_PRE_IND) is the pre-industrial (circa 1750) reference 
atmospheric concentration of CO2 = 596.4 GtC 

¥ # is the radiative forcing sensitivity to atmospheric CO2 concentration doubling  = 
3.7 W/m2 

 
b) The radiative forcing due to atmospheric CH4 is given by the following expression 
(IPCC 2007), where the subscript tot has been omitted 
 

( ) [ ] )87()2,4()2,4(44036.0)( 00004 !!!!"=# ONCHfONCHfCHCHyF yyCH

 
c) The radiative forcing due to atmospheric N2O is given by the following expression 
(IPCC, 2007) 
 

( ) [ ] )97()2,4()2,4(2212.0)( 00002 !!!!"=# ONCHfONCHfONONyF yyON

 
where: 
 

[ ] )107()(1031.5)(1001.21ln47.0),( 52.11575.05 !""+""+"= !! xyxxyyxf
 
 
Note that the f(x,y) function, which quantifies the cross-effects on forcing of the presence 
in the atmosphere of both gases (CH4 and N2O), is not quite symmetrical in the two 
gases. As usual, the 0 subscript indicates the pre-industrial times (1750). 
 
d) EXOFOR(y) is the increase in total radiative forcing at period t relative to pre-
industrial level due to GHGÕs that are not represented explicitly in the model. Units = 
W/m2. In Nordhaus and Boyer (1999), only emissions of CO2 were explicitly modeled, 
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and therefore EXOFOR(y) accounted for all other GHGÕs. In TIMES, N2O and CH4 are 
fully accounted for, but some other substances are not (e.g. CFCÕs, aerosols, ozone, 
volcanic activity, etc.). Therefore, the values for EXOFOR(y) will differ from those in 
Nordhaus and Boyer (1999). It is the modelerÕs responsibility to include in the calculation 
of EXOFOR(y) the forcing from only those gases and other causes that are not modeled. 
The careful modeler may also want to adapt the EXOFOR trajectory to particular 
scenarios. This has been done using alternative trajectories for EXOFOR provided by 
other models, as was done in a multi-model, multi-scenario study conducted at the 
Energy Modeling Forum (Clarke et al., 2009) 
 
The parameterization of the three forcing equations (7-8, 7-9, and 7-10) is not 
controversial and relies on the results reported by Working Group I of the IPCC. IPCC 
(2001, Table 6.2, p.358) provides a value of 3.7 for $, smaller than the one used by 
Nordhaus and Boyer ($ = 4.1). We have adopted this lower value of 3.7 W/m2 as default 
in TIMES. Users are free to experiment with other values of the $ parameter. The same 
reference provides the entire expressions for all three forcing equations. 
 
 

7.3 Linear approximations of the three forcings 
 
In TIMES, each of the three forcing expressions is replaced by a linear approximation, in 
order to preserve linearity of the entire model. All three forcing expressions are concave 
functions. Therefore, two linear approximations are obvious candidates. The first one is 
an approximation from below, consisting of the chord of the graph between two selected 
end-points. The second one has the same slope as the chord and is tangent to the graph, 
thus approximating the function from above. The final approximation is the arithmetic 
average of the two approximations. These linear expressions are easily derived once a 
range of interest is defined by the user.  
 
As an example, we derive below the linear approximation for the CO2 forcing 
expression. The other approximations are obtained in a similar manner. 
 
Linear approximation for the CO2 forcing expression (see technical note ÒTIMES 
Climate ModuleÓ for similar approximations of the other two forcings): 
 
First, an interval of interest for the concentration M must be selected by the user. The 
interval should be wide enough to accommodate the anticipated values of the 
concentrations, but not so wide as to make the approximation inaccurate. We denote the 
interval (M1,M2).  
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Next, the linear forcing equation is taken as the half sum of two linear expressions, which 
respectively underestimate and overestimate the exact forcing value. The underestimate 
consists of the chord of the logarithmic curve, whereas the overestimate consists of the 
tangent to the logarithmic curve that is parallel to the chord. These two estimates are 
illustrated in Figure 7.1, where the interval (M1,M2) is from 375 ppm to 550 ppm. 
 
By denoting the pre-industrial concentration level as M0, the general formulas for the two 
estimates are as follows: 
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7.4 Temperature increase 
 
In the TIMES Climate Module as in many other integrated models, climate change is 
represented by the global mean surface temperature. The idea behind the two-reservoir 
model is that a higher radiative forcing warms the atmospheric layer, which then quickly 
warms the upper ocean. In this model, the atmosphere and upper ocean form a single 
layer, which slowly warms the second layer consisting of the deep ocean. 
 
#Tup(y) = #Tup(y-1) +$1{F(y) Ð%#Tup(y-1) Ð $2 [#Tup(y-1) Ð #Tlow(y-1)]}  (7-11)    
#Tlow(y) = #Tlow(y-1) + $3[#Tup(y-1) Ð #Tlow (y-1)] (7-12) 
 
with 
 

¥ %Tup = globally averaged surface temperature increase above pre-industrial level, 
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 Figure 7.1. Illustration of the linearization of the CO2 radiative forcing function 
 
 

¥ %Tlow= deep-ocean temperature increase above pre-industrial level, 
¥ &1= 1-year speed of adjustment parameter for atmospheric temperature (also 

known as the lag parameter), 

¥ &2= coefficient of heat loss from atmosphere to deep oceans, 

¥ &3 = 1-year coefficient of heat gain by deep oceans, 
¥ ' = feedback parameter (climatic retroaction). It is customary to write ' as  

'  =#/Cs, Cs being the climate sensitivity parameter, defined as the change in 
equilibrium atmospheric temperature induced by a doubling of CO2 concentration. 
In contrast with most other parameters, the value of Cs is highly uncertain, with a 
possible range of values from 1oC to 10oC. This parameter is therefore a prime 
candidate for sensitivity analysis, or for treatment by probabilistic methods such 
as stochastic programming.  

 
For more details on the implementation of the Climate Module in TIMES, including 
parameters, variables, and equations, as represented in the TIMES code, see Appendix A 
of Part II.  
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8 The Stochastic Programming extension 
 

8.1 Preamble to chapters 8 to 11 
 
Recall that the core TIMES paradigm described in chapters 3, 4, and 5 makes several 
basic assumptions: 
 

¥ Linearity of the equations and objective function 

¥ Perfect foresight of all agents over the entire horizon 

¥ Competitive markets (i.e. no market power by any agent) 
 
If any or all of these assumptions are violated, the properties of the resulting equilibrium 
are no longer entirely valid. In the following four chapters, we present four variants of the 
TIMES paradigm that depart from the core model. Each of these variants (extensions) 
departs from one or more assumptions above, as follows: 
 

¥ Stochastic Programming TIMES extension: departs from the perfect foresight 
assumption and instead assumes that certain key model parameters are random. 
This extension requires the use of stochastic programming rather than the usual 
deterministic linear programming algorithm; 

 

¥ Limited horizon TIMES extension: departs from the perfect foresight assumption 
and replaces it by an assumption of limited (in time) foresight. This extension 
requires the use of sequential linear programming rather than a single global 
linear optimization; 
 

¥ Lumpy investments extension: departs from the linearity assumption and replaces 
it by the assumption that certain investments may only be made in discrete units 
rather than in infinitely divisible quantities. This extension requires the use of 
mixed integer programming (MIP) instead of Linear programming; 
 

¥ The endogenous technological learning (ETL) extension: departs from the 
linearity assumption for the cost of technologies and replaces it by an assumption 
that the costs of some technologies are decreasing functions of the cumulative 
amounts of the technologies, i.e. a learning curve is assumed. This entails that 
some parts of the objective function are non-linear and non-convex, and requires 
the use of MIP. 
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Remark: None of these four extensions departs from the competitive market assumption. 
It is also possible to simulate certain types of non-competitive behavior using TIMES. 
For instance, it has been possible to simulate the behavior of the OPEC oil cartel by 
assuming that OPEC imposes an upper limit on its oil production in order to increase its 
long term profit (Loulou et al, 2007). Such uses of TIMES are not embodied in new 
extensions. Rather, they are left to the ingenuity of the user. 
 

8.2 Stochastic Programming concepts and formulation 
 
Stochastic Programming is a method for making optimal decisions under risk. The risk 
consists of facing uncertainty regarding the values of some (or all) of the LP parameters 
(cost coefficients, matrix coefficients, RHSs). Each uncertain parameter is considered to 
be a random variable, usually with a discrete, known probability distribution. The 
objective function thus becomes also a random variable and a criterion must be chosen in 
order to make the optimization possible. Such a criterion may be expected cost, expected 
utility, etc., as mentioned by Kanudia and Loulou (1998).  Technical note ÒTIMES-
StochasticÓ provides a more complete description of the TIMES implementation 
 
Uncertainty on a given parameter is said to be resolved, either fully or partially, at the 
resolution time, i.e. the time at which the actual value of the parameter is revealed. 
Different parameters may have different times of resolution. Both the resolution times 
and the probability distributions of the parameters may be represented on an event tree, 
such as the one of figure 8.1, depicting a typical energy/environmental situation. In figure 
8.1, two parameters are uncertain: mitigation level, and demand growth rate. The first 
may have only two values (High and Low), and becomes known in 2010. The second 
also may have two values (High and Low) and becomes known in 2020. The probabilities 
of the outcomes are shown along the branches. This example assumes that present time is 
2000. This example is said to have three stages (i.e. two resolution times). The simplest 
non-trivial event tree has only two stages (a single resolution time). Each pathway along 
the event tree, representing a different realization of the uncertain parameters is referred 
to as a state-of-the-world (SOW). 
 
The key observation is that prior to resolution time, the decision maker (and hence the 
model) does not know the eventual values of the uncertain parameters, but still has to 
take decisions. On the contrary, after resolution, the decision maker knows with certainty 
the outcome of some event(s) and his subsequent decisions will be different depending on 
which outcome has occurred. 
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For the example shown in figure 8.1, in 2000 and 2010 there can be only one set of 
decisions, whereas in 2020 there will be two sets of decisions, contingent on which of the 
mitigation outcomes (High or Low) has occurred, and in 2030, 2040, 2050 and 2060, 
there will be four sets of contingent decisions.  
 

 
Figure 8.1. Event Tree for a three-stage stochastic TIMES Example. 
 
This remark leads directly to the following general multi-period, multi-stage stochastic 
program in Equations 8-1 to 8-3 below. The formulation described here is based on 
Dantzig (1963, Wets (1989), or Kanudia and Loulou (1999), and uses the expected cost 
criterion. Note that this is a LP, but its size is much larger than that of the deterministic 
TIMES model. 
 
Minimize 

)18( !""##
$$

s)p(t,s)X(t,s)C(t,=Z
S(t)sTt  

 

Subject to: 
),(),(),( stbstXstA !" TtTSs !!" ),(  (8-2) 

Low mitigation
50%

Low growth 50%

High growth 50%

Low growth 60%

High mitigation
50%

High growth 40%

Stage 1 Stage 2 Stage 3

2060205020402030202020102000
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(8-3) 

 
where 

t = time period 
T = set of time periods 
s = state index 
S(t) = set of state indices for time period t;  

 
For Figure 8.1, we have: S(2000) = 1;  S(2010) = 1;  S(2020) = 1,2;  S(2030) = 1,2,3,4; 
S(2040) = 1,2,3,4;  S(2050) = 1,2,3,4;  S(2060) = 1,2,3,4;  
 

S(T) = set of state indices at the last stage (the set of scenarios). Set S(T) is 
homeomorphic to the set of paths from period 1 to last period, in the event 
tree. 

g(t,s) = a unique mapping from { })(|),( TSsst !  to S(t), according to the event tree. 

g(t,s) is the state at period t corresponding to scenario s. 
X(t,s) = the column vector of decision variables in period t, under state s 
C(t,s) = the cost row vector 
p(t,s) = event probabilities 
A(t,s) = the LP sub-matrix of single period constraints, in time period t, under state s 
b(t,s) = the right hand side column vector (single period constraints) in time period t, 

under state s 
D(t,s) = the LP sub-matrix of multi-period constraints under state s 
e(s) = the right hand side column vector (multi-period constraints) under scenario s  

 
Alternate formulation : The above formulation makes it a somewhat difficult to retrieve 
the strategies attached to the various scenarios. Moreover, the actual writing of the 
cumulative constraints (8-3) is a bit delicate. An alternate (but equivalent) formulation 
consists in defining one scenario per path from initial to terminal period, and to define 
distinct variables X(t,s) for each scenario and each time period. For instance, in this 
alternate formulation of the example, there would be four variables X(t,s) at every 
period t, (whereas there was only one variable X(2000,1) in the previous formulation).  
 
 Minimize 

)'18( !""##
$$

s)p(t,s)X(t,s)C(t,=Z
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Subject to: 
),(),(),( stbstXstA !"  all t, all s                                            (8Ñ 2)Õ  

)(),(),( sestXstD
Tt

!"#
$

all t, all s                                                   (8Ñ 3)Õ  

 
Of course, in this approach we need to add equality constraints to express the fact that 
some scenarios are identical at some periods. In the example of Figure 8.1, we would 
have: 
 
X(2000,1)=X(2000,2)=X(2000,3)=X(2000,4), 
X(2010,1)=X(2010,2)=X(2010,3)=X(2010,4), 
X(2020,1)=X(2020,2), 
X(2020,3)=X(2020,4). 
 
Although this formulation is less parsimonious in terms of additional variables and 
constraints, many of these extra variables and constraints are in fact eliminated by the 
pre-processor of most optimizers. The main advantage of this new formulation is the ease 
of producing outputs organized by scenario. 
 
In the current implementation of stochastic TIMES, the first approach has been used 
(Equations 8-1 to 8-3). The results are however reported for all scenarios in the same way 
as in the second approach. 
 
In addition, in TIMES there is also an experimental variant for the modeling of recurring 
uncertainties with stochastic programming, described in Appendix A of technical note 
ÒTIMES-StochasticÓ. 
 
 

8.3 Alternative criteria for the objective function 
 
The preceding description of stochastic programming assumes that the policy maker 
accepts the expected cost as his optimizing criterion. This is equivalent to saying that he 
is risk neutral. In many situations, the assumption of risk neutrality is only an approxi-
mation of the true utility function of a decision maker.  
 
Two alternative candidates for the objective function are: 
 

¥ Expected utility criterion with linearized risk aversion 
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¥ Minimax Regret criterion (Raiffa,1968, applied in Loulou and Kanudia, 1999) 

8.3.1 Expected utility criterion with risk aversion 
 
The first alternative has been implemented into the stochastic version of TIMES. This 
provides a feature for taking into account that a decision maker may be risk averse, by 
defining a new utility function to replace the expected cost.  
 
The approach is based on the classical E-V model (an abbreviation for Expected Value-
Variance). In the E-V approach, it is assumed that the variance of the cost is an 
acceptable measure of the risk attached to a strategy in the presence of uncertainty. The 
variance of the cost of a given strategy k is computed as follows: 
 

! "¥=
j

kkjjk ECCostpCVar 2)()(

 
where Costj|k is the cost when strategy k is followed and the jth state of nature prevails, 

and EC k is the expected cost of strategy k, defined as usual by:  
 

! ¥=
j

kjjk CostpEC

 
An E-V approach would thus replace the expected cost criterion by the following utility 
function to minimize: 

)(CVarECU !+= "
 

 
where '>0 is a measure of the risk aversion of the decision maker. For '=0, the usual 
expected cost criterion is obtained. Larger values of !  indicate increasing risk aversion.  
 
Taking risk aversion into account by this formulation would lead to a non-linear, non-
convex model, with all its ensuing computational restrictions. These would impose 
serious limitations on model size. 
 

8.3.2 Utility function with linearized risk aversion 
 
To avoid non-linearities, it is possible to replace the semi-variance by the upper-absolute-
deviation, defined by: 
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where y= {x}+ is defined by the following two linear constraints:  y " x , and y " 0, and 
the utility is now written via the following linear expression: 
 

)(CUpsAbsDevECU !+= "
 

 
This is the expected utility formulation implemented into the TIMES model generator. 
 
 

8.4 Solving approaches 
 
General multi-stage stochastic programming problems of the type described above can be 
solved by standard deterministic algorithms by solving the deterministic equivalent of the 
stochastic model. This is the most straightforward approach, which may be applied to all 
problem instances. However, the resulting deterministic problem may become very large 
and thus difficult to solve, especially if integer variables are introduced, but also in the 
case of linear models with a large number of stochastic scenarios. 
 
Two-stage stochastic programming problems can also be solved efficiently by using a 
Benders decomposition algorithm (Wets, 1989). Therefore, the classical decomposition 
approach to solving large multi-stage stochastic linear programs has been nested Benders 
decomposition. However, a multi-stage stochastic program with integer variables does 
not, in general, allow a nested Benders decomposition. Consequently, more complex 
decompositions approaches are needed in the general case (e.g. Dantzig-Wolfe 
decomposition with dynamic column generation, or stochastic decomposition methods). 
 
The current version of the TIMES implementation for stochastic programming is solely 
based on directly solving the equivalent deterministic problem. As this may lead to very 
large problem instances, stochastic TIMES models are in practice limited to a relatively 
small number of branches of the event tree (SOW's). 
 
 

8.5 Economic interpretation 
 
The introduction of uncertainty alters the economic interpretation of the TIMES solution. 
Over the last two decades, economic modeling paradigms have evolved to a class of 
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equilibria called Dynamic Stochastic General Equilibria (DSGE, see references Chen and 
Crucuni, 2012; de Walque et al., 2005; Smets et al., 2007). In the case of Stochastic 
TIMES, we are in the presence of a Dynamic Stochastic Partial Equilibria (DSPE), with a 
much less developed literature. The complete characterization of a DSPE is beyond the 
scope of this documentation, but it is useful to note some of its properties, which derive 
from the theory of Linear Programming, as follows: 
 

¥ During the first stage (i.e. before resolution of any uncertainties), the meaning of 
the primal solution is identical to that of a deterministic TIMES run, i.e. of a set of 
optimal decisions, whereas the meaning of the shadow prices is that of expected 
prices(resp. expected marginal utility changes) of the various commodities. This 
is so because the shadow price is the marginal change in objective function when 
a commodity's balance is marginally altered, and the objective function is an 
expected cost (resp. an expected utility function). 

 

¥ During subsequent stages, the primal values of any given branch of the event tree 
represent the optimal decisions conditional on the corresponding outcome being 
true, and the shadow prices are the expected35 prices of the commodities also 
conditional on the corresponding outcome being true.  

  

                                                
35 The expected prices become deterministic prices if the stage is the last one, so that there is no uncertainty 
remaining at or after the current period. 



103 
 

9 Using TIMES with limited foresight (time-stepped) 
 
It may be useful to simulate market conditions where all agents take decisions with only a 
limited foresight of a few years or decades, rather than the very long term. By so doing, a 
modeler may attempt to simulate "real-world" decision making conditions, rather than 
socially optimal ones. Both objectives are valid provided the modeler is well aware of 
each approach's characteristics. 
 
Be that as it may, it is possible to use TIMES in a series of time-stepped runs, each with 
an optimizing horizon shorter than the whole horizon. The option that enables this mode 
is named FIXBOH, which freezes the solution over some user chosen years, while letting 
the model optimize over later years. The FIXBOH feature has several applications and is 
first described below before a full description of the time-stepped procedure. 
 
 

9.1 The FIXBOH feature 
 
This feature requires that an initial run be made first, and then FIXBOH sets fixed bounds 
for a subsequent run according to the solution values from the initial run up to the last 
milestone year less than or equal to the year specified by the FIXBOH control parameter. 
For instance, the initial run may be a reference case, which is run from 2010 to 2100, and 
the FIXBOH value might be set at 2015, in which case a subsequent run would have 
exactly the same solution values as the reference case up to 2015. This is an extremely 
convenient feature to use in most situations.  
 
As a generalization to the basic scheme described above, the user can also request fixing 
to the previous solution different sets of fixed years according to region. 
 
Example: Assume that you would like to analyze the 15-region ETSAP TIAM model 
with some shocks after the year 2030, and you are interested in differences in the model 
solution only in regions that have notable gas or LNG trade with the EU. Therefore, you 
would like to fix the regions AUS, CAN, CHI, IND, JPN, MEX, ODA and SKO 
completely to the previous solution, and all other regions to the previous solution up to 
2030. 
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9.2 The time-stepped option (TIMESTEP) 
 
The purpose of the TIMESTEP option is to run the model in a stepwise manner with 
limited foresight. The TIMESTEP control variable specifies the number of years that 
should be optimized in each solution step. The total model horizon will be solved by a 
series of successive steps, so that in each step the periods to be optimized are advanced 
further in the future, and all periods before them are fixed to the solution of the previous 
step (using the FIXBOH feature). It is important that any two successive steps have one 
or more overlapping period(s), in order to insure overall continuity of the decisions 
between the two steps (in the absence of the overlap, decisions taken at step n would 
have no initial conditions and would be totally disconnected from step n-1 decisions.) 
 
Figure 9.1 illustrates the step-wise solution approach with a horizon of 8 periods and 6 
successive optimization steps. Each step has a 2 period sub-horizon, and there is also an 
overlap of one period between a step and the next. More explicitly: at step 2, all period 2 
variables are frozen at the values indicated in the solution of step 1, and period 3 is free to 
be optimized. At step 3, period 3 variables are frozen and period 4 is optimized, etc.  
 

 
Figure 9.1. Sequence of optimized periods in the stepped TIMES solution approach.  
Each run includes also the fixed solution of all earlier periods. 
 
The amount of overlapping years between successive steps is by default half of the active 
step length (the value of TIMESTEP), but it can be controlled by the user.  
 
Important remark: as mentioned above, the user chooses the lengths of the sub-horizons 
and the length of the overlaps, both expressed in years. Because the time periods used in 
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the model may be variable and may not always exactly match with the step-length and 
overlap, the actual active step-lengths and overlaps may differ somewhat from the values 
specified by the user. At each step the model generator uses a heuristic that tries to make 
a best match between the remaining available periods and the prescribed step length. 
However, at each step it is imperative that at least one of the previously solved periods 
must be fixed, and at least one remaining new period is taken into the active optimization 
in the current step. 
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10 The Lumpy Investment extension 
 
In some cases, the linearity property of the TIMES model may become a drawback for 
the accurate modeling of certain investment decisions. Consider for example a TIMES 
model for a relatively small community such as a city. For such a scope the granularity 
of some investments may have to be taken into account. For instance, the size of an 
electricity generation plant proposed by the model would have to conform to an 
implementable minimum size (it would make no sense to decide to construct a 50 MW 
nuclear plant). Another example for multi-region modeling might be whether or not to 
build cross-region electric grid(s) or gas pipeline(s) in discrete size increments. Processes 
subject to investments of only specific size increments are described as ÒlumpyÓ 
investments.  
 
For other types of investments, size does not matter: for instance the model may decide to 
purchase 10,950.52 electric cars, which is easily rounded to 10,950 without any serious 
inconvenience, especially since this number is an annual figure. The situation is similar 
for a number of residential or commercial heating devices; or for the capacity of wind 
turbines; or of industrial boilers; in short, for any technologies with relatively small 
minimum feasible sizes. Such technologies would not be candidates for treatment as 
ÒlumpyÓ investments.  
 
This chapter describes the basic concept and mathematics of lumpy investment option, 
whereas the implementation details are available in Part II, section 6.3.24. We simply 
note here that this option, while introducing new variables and constraints, does not affect 
existing TIMES constraints. 
 
It is the userÕs responsibility to decide whether or not certain technologies should respect 
the minimum size constraint, weighing the pros and cons of so doing. This chapter 
explains how the TIMES LP is transformed into a Mixed Integer Program (MIP) to 
accommodate minimum or multiple size constraints, and states the consequences of so 
doing on computational time and on the interpretation of duality results. 
 
The lumpy investment option available in TIMES is slightly more general than the one 
described above. It insures that investment in technology k is equal to one of a finite 
number N of pre-determined sizes: 0, S1(t), S2(t), É,S N(t). This is useful when several 
typical plant sizes are feasible in the real world. As implied by the notation, these discrete 
sizes may be different at different time periods. Note that by choosing the N sizes as the 
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successive multiples of a fixed number S, it is possible to invest (perhaps many times) in 
a technology with fixed standard size. 
 
Imposing such a constraint on an investment is unfortunately impossible to formulate 
using standard LP constraints and variables. It requires the introduction of integer 
variables into the formulation. The optimization problem resulting from the introduction 
of integer variables into a Linear Program is called a Mixed Integer Program (MIP).  
 
 

10.1 Formulation and solution of the Mixed Integer Linear Program 
 
Typically, the modeling of a lumpy investment involves Integer Variables, i.e. variables 
whose values may only be non-negative integers (0, 1, 2, É). The mathematical 
formulation is as follows: 
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The second and third constraints taken together imply that at most one of the Z variables 
is equal to 1 and all others are equal to zero. Therefore, the first constraint now means 
that NCAP is equal to one of the preset sizes or is equal to 0, which is the desired result. 
 
Although the formulation of lumpy investments looks simple, it has a profound effect on 
the resulting optimization program. Indeed, MIP problems are notoriously more difficult 
to solve than LPs, and in fact many of the properties of linear programs discussed in the 
preceding chapters do not hold for MIPs, including duality theory, complementary 
slackness, etc. Note that the constraint that Z(p,t) should be 0 or 1  departs from the 
divisibility property of linear programs. This means that the feasibility domain of integer 
variables (and therefore of some investment variables) is no longer contiguous, thus 
making it vastly more difficult to apply purely algebraic methods to solve MIPÕs. In fact, 
practically all MIP solution algorithms make use (at least to some degree) of partial 
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enumerative schemes, which tend to be time consuming and less reliable36 than the 
algebraic methods used in LP. 
 
The reader interested in more technical details on the solution of LPs and of MIPs is 
referred to references (Hillier and Lieberman, 1990, Nemhauser et al. 1989). In the next 
section we shall be content to state one important remark on the interpretation of the dual 
results from MIP optimization. 
 
 

10.2 Discrete early retirement of capacity 
 
The discrete retirement of capacity that was briefly mentioned in section 5.4.11 requires a 
treatment quite similar to that of discrete addition to capacity presented here. The 
complete mathematical formulation mimics that presented above, and is fully described 
in Part II, section 6.3.26, of the TIMES documentation. 
 
 

10.3 Important remark on the MIP dual solution (shadow prices) 
 
Using MIP rather than LP has an important impact on the interpretation of the TIMES 
shadow prices. Once the optimal MIP solution has been found, it is customary for MIP 
solvers to fix all integer variables at their optimal (integer) values, and to perform an 
additional iteration of the LP algorithm, so as to obtain the dual solution (i.e. the shadow 
prices of all constraints). However, the interpretation of these prices is different from that 
of a pure LP. Consider for instance the shadow price of the natural gas balance constraint: 
in a pure LP, this value represents the price of natural gas. In MIP, this value represents 
the price of gas conditional on having fixed the lumpy investments at their optimal integer 
values. What does this mean? We shall attempt an explanation via one example: suppose 
that one lumpy investment was the investment in a gas pipeline; then, the gas shadow 
price will not include the investment cost of the pipeline, since that investment was fixed 
when the dual solution was computed.  
 

                                                
36 A TIMES LP program of a given size tends to have fairly constant solution time, even if the database is 
modified. In contrast, a TIMES MIP may show some erratic solution times. One may observe reasonable 
solution times (although significantly longer than LP solution times) for most instances, with an occasional 
very long solution time for some instances. This phenomenon is predicted by the theory of complexity as 
applied to MIP, see Papadimitriou and Stieglitz (1982). 
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In conclusion, when using MIP, only the primal solution is fully reliable. In spite of this 
major caveat, modeling lumpy investments may be of paramount importance in some 
instances, and may thus justify the extra computing time and the partial loss of dual 
information. 
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11 The Endogenous Technological Learning extension 
 
In a long-term dynamic model such as TIMES the characteristics of many of the future 
technologies are almost inevitably changing over the sequence of future periods due to 
technological learning.  
 
In some cases it is possible to forecast such changes in characteristics as a function of 
time, and thus to define a time-series of values for each parameter (e.g. unit investment 
cost, or efficiency). In such cases, technological learning is exogenous since it depends 
only on time elapsed and may thus be established outside the model.  
 
In other cases there is evidence that the pace at which some technological parameters 
change is dependent on the experience acquired with this technology. Such experience is 
not solely a function of time elapsed, but typically depends on the cumulative investment 
(often global) in the technology. In such a situation, technological learning is 
endogenous, since the future values of the parameters are no longer a function of time 
elapsed alone, but depend on the cumulative investment decisions taken by the model 
(which are unknown).  In other words, the evolution of technological parameters may no 
longer be established outside the model, since it depends on the modelÕs results.  
 
Endogenous technological learning (ETL) is also named Learning-By-Doing (LBD) by 
some authors. 
 
Whereas exogenous technological learning does not require any additional modeling, 
ETL presents a tough challenge in terms of modeling ingenuity and of solution time. In 
TIMES, there is a provision to represent the effects of endogenous learning on the unit 
investment cost of technologies. Other parameters (such as efficiency) are not treated, at 
this time. 
 
 

11.1 The basic ETL challenge 
 
Empirical studies of unit investment costs of several technologies have been undertaken 
in several countries. Many of these studies find an empirical relationship between the unit 
investment cost of a technology at time t, INVCOSTt, and the cumulative investment in 

that technology up to time t, !
"=

=
t

j
jt NCAPVARC

1

_ .  
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A typical relationship between unit investment cost and cumulative investments is of the 
form:  
 

)111( !"= ! b
tt CaINVCOST  

 
where 

¥ INVCOST37 is the unit cost of creating one unit of the technology, which is no 
longer a constant, but evolves as more units of the technology are produced;  

¥ a is the value of INVCOST for the first unit of the technology (when Ct is equal to 
1) and; 

¥ b is the learning index, representing the speed of learning38.  
 
As experience builds up, the unit investment cost decreases, potentially rendering 
investments in the technology more attractive. It should be clear that near-sighted 
investors will not be able to detect the advantage of investing early in learning 
technologies, since they will only observe the high initial investment cost and, being 
near-sighted, will not anticipate the future drop in investment cost resulting from early 
investments. In other words, tapping the full potential of technological learning requires 
far-sighted agents who accept making initially non-profitable investments in order to later 
benefit from the investment cost reduction. 
 
With regard to actual implementation, simply using (11-1) as the objective function 
coefficient of VAR_NCAPt  will yield a non-linear, non-convex expression. Therefore, 
the resulting mathematical optimization is no longer linear, and requires special 
techniques for its solution. In TIMES, a Mixed Integer Programming (MIP) formulation 
is used, that we now describe.  
 
 

11.2 The TIMES formulation of ETL 

11.2.1 The cumulative investment cost 
 
We follow the basic approach described in Barreto, 2001. 

                                                
37 The notation in this chapter is sometimes different from the standard notation for parameters and 
variables, in order to conform to the more detailed technical note on the subject. 
38 It is usual to define, instead of b, another parameter, pr called the progress ratio, which is related to b via 

the following relationship:pr b= !2 . Hence, 1-pr is the cost reduction incurred when cumulative investment 

is doubled. Typical observed pr values are in a range of .75 to .95. 
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The first step of the formulation is to express the total investment cost, i.e. the quantity 
that should appear in the objective function. The cumulative investment cost TCt of a 
learning technology in period tis obtained by integrating expression (11-1):  
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TCt is a concave function of Ct, with a shape as shown in figure 11.1 
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Figure 11.1. Example of a cumulative learning curve 
 
With the Mixed Integer Programming approach implemented in TIMES, the cumulative 
learning curve is approximated by linear segments, and binary variables are used to 
represent some logical conditions. Figure 11.2 shows a possible piecewise linear 
approximation of the curve of Figure 11.1. The choice of the number of steps and of their 
respective lengths is carefully made so as to provide a good approximation of the smooth 
cumulative learning curve. In particular, the steps must be smaller for small values than 
for larger values, since the curvature of the curve diminishes as total investment 
increases. The formulation of the ETL variables and constraints proceeds as follows (we 
omit the period, region, and technology indexes for notational clarity):  
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1. The user specifies the set of learning technologies; 
2. For each learning technology, the user provides: 

a) The progress ratio pr (from which the learning index b may be inferred) 
b) One initial point on the learning curve, denoted (C0 , TC0 )  
c) The maximum allowed cumulative investment Cmax (from which the 

maximum total investment cost TCmax may be inferred) 
d) The number N of segments for approximating the cumulative learning 

curve over the (C0, Cmax) interval. 
Note that each of these parameters, including N, may be different for different 
technologies. 

3. The model automatically selects appropriate values for the N step lengths, and 
then proceeds to generate the required new variables and constraints, and the new 
objective function coefficients for each learning technology. The detailed 
formulae are shown and briefly commented on below. 
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Figure 11.2. Example of a 4-segment approximation of the cumulative cost curve 
 
 



114 
 

11.2.2 Calculation of break points and segment lengths 
 
The successive interval lengths on the vertical axis are chosen to be in geometric 
progression, each interval being twice as wide as the preceding one. In this fashion, the 
intervals near the low values of the curve are smaller so as to better approximate the 
curve in its high curvature zone. Let {TCi-1 , TCi} be the ith interval on the vertical axis, 
for i = 1, É, N -1.  Then:  
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Note that TCmax  is equal to TCN. 
 
The break points on the horizontal axis are obtained by plugging the TCi Õs into 
expression (11-2), yielding:  
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11.2.3 New variables 
 
Once intervals are chosen, standard approaches are available to represent a concave 
function by means of integer (0-1) variables. We describe the approach used in TIMES. 
First, we define N continuous variables xi, i= 1,É,N . Each xi represents the portion of 
cumulative investments lying in the ith interval. Therefore, the following holds:  
 

C = xi
i=1

N

! 11" 3 

 
We now define N integer (0-1) variables zi that serve as indicators of whether or not the 
value of C lies in the ith interval. We may now write the expression for TC, as follows: 
 

TC = aizi +bi xi
i=1

N

! 11" 4 

where bi is the slope of the ith line segment, and ai is the value of the intercept of that 
segment with the vertical axis, as shown in figure 11.3. The precise expressions for ai and 
bi are: 
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Figure 11.3. The ith segment of the step-wise approximation 
 

11.2.4 New constraints 
 
For (11-4) to be valid we must make sure that exactly one zi is equal to 1, and the others 
equal to 0. This is done (recalling that the zi variables are 0-1) via:  
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We also need to make sure that each xi lies within the ith interval whenever zi is equal to 1 
and is equal to 0 otherwise. This is done via two constraints: 
 

iiiii zCxzC !""!#1  
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11.2.5 Objective function terms 
 
Re-establishing the period index, we see that the objective function term at period t, for a 
learning technology is thus equal to TCt - TCt-1, which needs to be discounted like all 
other investment costs.   
 

11.2.6 Additional (optional) constraints 
 
Solving integer programming problems is facilitated if the domain of feasibility of the 
integer variables is reduced. This may be done via additional constraints that are not 
strictly needed but that are guaranteed to hold. In our application we know that 
experience (i.e. cumulative investment) is always increasing as time goes on. Therefore, 
if the cumulative investment in period t lies in segment i, it is certain that it will not lie in 
segments i-1, i-2, .., 1 in time period t+1. This leads to two new constraints (re-
establishing the period index t for the z variables):  
 

zj,t
j=1

i

! " zj,t+1
j=1

i

!

i =1,2,..., N #1, t =1,2,...,T #1

zj,t $
j=i

N
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j=i
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Summarizing the above formulation, we observe that each learning technology requires 
the introduction of N*T integer (0-1) variables. For example, if the model has 10 periods 
and a 5-segment approximation is selected, 50 integer (0-1) variables are created for that 
learning technology, assuming that the technology is available in the first period of the 
model. Thus, the formulation may become very onerous in terms of solution time, if 
many learning technologies are envisioned, and if the model is of large size to begin with. 
In section 11.5 we provide some comments on ETL, as well as a word of warning.  
 
 

11.3 Clustered learning 
 
An interesting variation of ETL is also available in TIMES, namely the case where 
several technologies use the same key technology (or component), itself subject to 
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learning. For instance, table 11.1 lists 11 technologies using the key Gas Turbine 
technology. As experience builds up for gas the turbine, each of the 11 technologies in 
the cluster benefits. The phenomenon of clustered learning is modeled in TIMES via the 
following modification of the formulation of the previous section.  
 
Let k designate the key technology and let l = 1, 2, É,L designate the set of clustered 
technologies attached to k. The approach consists of three steps:  
 

i) Step 1: designate k as a learning technology, and write for it the formulation 
of the previous section; 

ii)  Step 2: subtract from each INVCOSTl  the initial investment cost of technology 
k (this will avoid double counting the investment cost of k); 

iii)  Step 3: add the following constraint to the model, in each time period. This 
ensures that learning on k spreads to all members of its cluster: 
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Table 11.1: Cluster of gas turbine technologies 

(from A. Sebregts and K. Smekens, unpublished report, 2002) 
Description 

Integrated Coal gasification power plant 
Integrated Coal Gasification Fuel Cell plant 
Gas turbine peaking plant 
Existing gas Combined Cycle power plant 
New gas Combined Cycle power plant 
Combined cycle Fuel Cell power plant 
Existing gas turbine CHP plant 
Existing Combined Cycle CHP plant 
Biomass gasification: small industrial cog. 
Biomass gasification: Combined Cycle power plant 
Biomass gasification: ISTIG+reheat 

 
 
 

11.4 Learning in a multiregional TIMES model 
 
Technological learning may be acquired via global or local experience, depending on the 
technology considered. There are examples of technologies that were developed and 
perfected in certain regions of the world, but have tended to remain regional, never fully 
spreading globally. Examples are found in land management, irrigation, and in household 
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heating and cooking devices. Other technologies are truly global in the sense that the 
same (or close to the same) technology becomes rather rapidly commercially available 
globally. In the latter case, global experience benefits users of the technology worldwide. 
Learning is said to spillover globally. Examples are found in large electricity plants, in 
steel production, wind turbines, and many other sectors.  
 
The first and obvious implication of these observations is that the appropriate model 
scope must be used to study either type of technology learning. The formulation 
described in the previous sections is adequate in two cases: a) learning in a single region 
model, and b) regional learning in a multiregional model. It does not directly apply to 
global learning in a multiregional global model, where the cumulative investment 
variable must represent the sum of all cumulative investments in all regions together. We 
now describe an approach to global learning that may be implemented in TIMES, using 
only standard TIMES entities.  
 
The first step in modeling multiregional ETL is to create one additional region, region 0, 
which will play the role of the Manufacturing Region. This regionÕs RES consists only of 
the set of (global) learning technologies (LTÕs). Each such LT has the following 
specifications: 
 

a) The LT has no commodity input. 
b) The LT has only one output, a new commodity c representing the ÔlearningÕ. This 

output is precisely equal to the investment level in the LT in each period.  
c) Commodity c may be exported to all other regions. 

 
Finally, in each ÔrealÕ region, the LT is represented with all its attributes except the 
investment cost NCAP_COST.  Furthermore, the construction of one unit of the LT 
requires an input of one unit of the learning commodity c (using the NCAP_ICOM 
parameter see chapter 3 of PART II). This ensures that the sum of all investments in the 
LT in the real regions is exactly equal to the investment in the LT in region 0, as desired. 
 
 

11.5 Endogenous vs. exogenous learning: a discussion 
 
In this section, we formulate a few comments and warnings that may be useful to 
potential users of the ETL feature.  

 
We start by stating a very important caveat to the ETL formulation described in the 
previous sections: if a model is run with such a formulation, it is very likely that the 
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model will select some technologies, and will invest massively at some early period in 
these technologies unless it is prevented from doing so by additional constraints. Why 
this is likely to happen may be qualitatively explained by the fact that once a learning 
technology is selected for investing, two opposing forces are at play in deciding the 
optimal timing of the investments. On the one hand, the discounting provides an 
incentive for postponing investments. On the other hand, investing early allows the unit 
investment cost to drop immediately, and thus allows much cheaper investments in the 
learning technologies in the current and all future periods. Given the considerable cost 
reduction that is usually induced by learning, the first factor (discounting) is highly 
unlikely to predominate, and hence the model will tend to invest massively and early in 
such technologies, or not at all. Of course, what we mean by ÒmassivelyÓ depends on the 
other constraints of the problem (such as the extent to which the commodity produced by 
the learning technology is in demand, the presence of existing technologies that compete 
with the learning technology, etc.). However, there is a clear danger that we may observe 
unrealistically large investments in some learning technologies.  
 
ETL modelers are well aware of this phenomenon, and they use additional constraints to 
control the penetration trajectory of learning technologies. These constraints may take the 
form of upper bounds on the capacity of or the investment in the learning technologies in 
each time period, reflecting what is considered by the user to be realistic penetrations. 
These upper bounds play a determining role in the solution of the problem, and it is most 
often observed that the capacity of a learning technology is either equal to 0 or to the 
upper bound. This last observation indicates that the selection of upper bounds (or 
capacity/investment growth rates) by the modeler is the predominant factor in controlling 
the penetration of successful learning technologies.  
 
In view of the preceding discussion, a fundamental question arises: is it worthwhile for 
the modeler to go to the trouble of modeling endogenous learning (with all the attendant 
computational burdens) when the results are to a large extent conditioned by exogenous 
upper bounds?  We do not have a clear and unambiguous answer to this question; that is 
left for each modeler to evaluate. 
 
However, given the above caveat, a possible alternative to ETL would consist in using 
exogenous learning trajectories. To do so, the same sequence of ÔrealisticÕ upper bounds 
on capacity would be selected by the modeler, and the values of the unit investment costs 
(INVCOST) would be externally computed by plugging these upper bounds into the 
learning formula (11-1). This approach makes use of the same exogenous upper bounds 
as the ETL approach, but avoids the MIP computational burden of ETL. Of course, the 
running of exogenous learning scenarios is not entirely foolproof, since there is no 
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absolute guarantee that the capacity of a learning technology will turn out to be exactly 
equal to its exogenous upper bound. If that were not the case, a modified scenario would 
have to be run, with upper bounds adjusted downward. This trial-and-error approach may 
seem inelegant, but it should be remembered that it (or some other heuristic approach) 
might prove to be necessary in those cases where the number of learning technologies 
and the model size are both large (thus making the rigorous ETL formulation 
computationally intractable). 
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12 General equilibrium extensions 
 

12.1 Preamble 
 
In order to achieve a general (as opposed to partial) equilibrium, the energy system 
described in TIMES must be linked to a representation of the rest of the economy. The 
idea of hard-linking an energy model with the economy while still keeping the resulting 
model as an optimization program, dates back to the ETA-MACRO model (Manne, 
1977), where both the energy system and the rest of the economy were succinctly 
represented by a small number of equations. This approach differs from the one taken by 
the so-called Computable General Equilibrium (CGE), models (Johanssen 1960, 
Rutherford 1992), where the calculation of the equilibrium relies on the resolution of 
simultaneous non-linear equations. In CGE's, the use of (non-linear, non-convex) 
equation solvers limits the size of the problem and thus the level of detail in the energy 
system description. This computational difficulty is somewhat (but not completely) 
alleviated when the computation relies on a single non-linear optimization program. Note 
however that MACRO is a much simplified representation of the economy as a single 
producing sector and no government sector, thus precluding the endogenous 
representation of taxes, subsidies, multi-sector interactions, etc. Therefore, the idea of a 
linked TIMES-MACRO model is not to replace the CGE's but rather to create an energy 
model where the feedbacks from the economy goes beyond the endogenization of 
demands (which TIMES does) to include the endogenization of capital. 
 
Some years after ETA-MACRO, MARKAL-MACRO (Manne-Wene, 1992) was 
obtained by replacing the simplified ETA energy sub-model by the much more detailed 
MARKAL, giving rise to a large optimization model where most, but not all equations 
were linear. The MERGE model (Manne et al., 1995) is a multi-region version of ETA-
MACRO with much more detail on the energy side Ðalthough not as much as in 
MARKAL -MACRO. The TIMES-MACRO model (Remme-Blesl, 2006) is based on 
exactly the same approach as MARKAL-MACRO. Both MARKAL-MACRO and 
TIMES-MACRO were essentially single-region models, until the multi-region version of 
TIMES-MACRO (named TIMES-MACRO-MSA, Kypreos-Lettila, 2013) was devised as 
an extension that accommodates multiple regions. 
 
In this chapter, we describe the single region and the multi-region versions of TIMES-
MACRO, focusing on the concepts and mathematical representation, whereas the 
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implementation details are left to Part II of the TIMES documentation and to technical 
notes. 
 
 

12.2 The single-region TIMES-MACRO model 
 
As was already discussed in chapter 4, the main physical link between a TIMES model 
and the rest of the economy occurs at the level of the consumption of energy by the end-
use sectors. There are however other links, such as capital and labor, which are common 
to the energy system and the rest of the economy.  Figure 12.1 shows the articulation of 
the three links in TIMES-MACRO. Energy flows from TIMES to MACRO, whereas 
money flows in the reverse direction. Labor would also flow from MACRO to TIMES, 
but here a simplification is used, namely that the representation of labor is purely 
exogenous in both sub-models. Thus, TIMES-MACRO is not suitable for analyzing the 
impact of policies on labor, or on taxation, etc.  

TIMES MACRO

LABOR NEW CAPITAL

INVESTMENTS

CONSUMPTIONAGGREGATE 
ENERGY

ENERGY COST

PRODUCTION

 
Figure 12.1. Energy, Labor, and Monetary flows between TIMES and MACRO 
 
We now turn to the mathematical description of the above, starting with the MACRO 
portion of the hybrid model. 
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12.2.1 Formulation of the MACRO model 
 
We start our description of the hybrid model by stating the MACRO equations  (12-1) Ð 
(12-6)39: 
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with the model variables: 

tC :  annual consumption in period t, 

t,dmDEM_M : annual energy demand in MACRO for commodity dm in period t, 

tY :  annual production in period t, 

tINV :  annual investments in period t, 

tEC :  annual energy costs in period t, 

tK :  total capital in period t 

 
and the exogenous parameters: 

akl : production function constant, 

dmb :  demand coefficient, 

                                                
39The concrete implementation in the TIMES-MACRO model differs in some points, e.g. the consumption 
variable in the utility function is substituted by equations (12-2) and (12-3). 
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td :  duration of period t in years, 

depr:  depreciation rate, 

tdfact :  utility discount factor, 

tdfactcurr: annual discount rate, 

tgrowv : growth rate in period t, 

kpvs  capital value share, 

tl :  annual labor index in period t, 

! :  substitution constant, 

T :  period index of the last period, 

ttsrv :  capital survival factor between two periods. 

 
The objective function (12-1) of the MACRO model is the maximization of the 
summation of discounted utility at each period. The utility is defined as the logarithm of 
consumption tC of the households. A logarithmic utility function embodies a decreasing 

marginal utility property (Manne, 1977). Note that the discount factor tdfact for period t 

must take into account both the length of the period and the time elapsed between the 
period's start and the base year. Note also that the discount factor of the last period has a 
larger impact since it is assumed to apply to the infinite time horizon after the last model 
period (alternatively, the user may decide to limit the number of years in the last term, in 
those cases where it is deemed important to confer less weight to the indefinite future). 
 
The national accounting equation (12-2) simply states that national production Yt must 
cover national consumption Ct , plus investments INVt , plus energy costs ECt. 
 
The production function (12-3) represents the entire economy. It is a nested, constant 
elasticity of substitution (CES) function with the three input factors capital, labor and 
energy. The production input factors labor tl and capital tK form an aggregate, in which 

both can be substituted by each other represented via a Cobb-Douglas function. Then, the 
aggregate of the energy services and the aggregate of capital and labor can substitute each 
other. Note that labor is not endogenous in MACRO,but is specified exogenously by the 
user provideda labor growth rate tgrowv . 

 
The energy in term in (12-3) is a weighted sum of end-use demands in all sectors dm of 
the economy, DEM_Mt,dm , raised to the power !.  We defer the definition of these 
quantities until the next subsection.   
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The lower the value of the elasticity of substitution the closer is the linkage between 
economic growth and increase in energy demand. For homogenous production functions 
with constant returns to scale40 the substitution constant ! in (12-3) is directly linked 

with the user-defined elasticity of substitution !  by the expression !" 11#= .  

 
The capital value share kpvs describes the share of capital in the sum of all production 

factors and must be specified by the user. The parameter akl  is the level constant of the 

production function. The parameters akl  and dmb  of the production are determined based 

on the results from a TIMES model run without the MACRO module. 
 
The capital dynamics equation (12-5) describes the capital stock in the current period 

1tK +  based on the capital stock in the previous period and on investments made in the 

current and the previous period. Depreciation leads to a reduction of the capital. This 
effect is taken into account by the capital survival factorttsrv , which describes the share 

of the capital or investment in period t that still exists in period t+1. It is derived from the 
depreciation rate depr using the following expression: 
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Expression (12-7) calculates the capital survival factor for a period of years beginning 
with the end of the middle year tm  and ending with the end of the year 1+tm . The 

duration between these two middle years equals the duration 
2

1 tt dd ++ . Then, a mean 

investment in period t is calculated by weighting the investments in t and t+1 with the 
respective period duration: ( )1t1ttt INVdINVtsrvd ++ !+!!21 . 

 
For the first period it is assumed that the capital stock grows with the labor growth rate of 
the first period 0growv . Thus, the investment has to cover this growth rate plus the 

depreciation of capital. Since the initial capital stock is given and the depreciation and 
growth rates are exogenous, the investment in the first period can be calculated 
beforehand: 
 

                                                
40 A production function is called homogenous of degree r, if multiplying all production factors by a 

constant scalar leads ! to an increase of the function byr! .  If r= 1, the production function is called 

linearly homogenous and leads to constant returns to scale. 
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Since the model horizon is finite, one has to ensure that the capital stock is not fully 
exhausted (which would maximize the utility in the model horizon.) Therefore a terminal 
condition (12-6) is added, which guarantees that after the end of the model horizon a 
capital stock for the following generations exists. It is assumed that the capital stock 
beyond the end of horizon grows with the labor growth rate Tgrowv . This is coherent 

with the last term of the utility function. 
 

12.2.2 Linking MACRO with TIMES 
 
TIMES is represented via the following condensed LP 
 

!"# ! !"#$%!
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! ! ! ! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!! ! !  
where 
 

¥ x is the vector of TIMES variables 
¥ !"#$ !! ! !  is the annual undiscounted cost TIMES expression 

¥ dfactt is the discount factor for period t 

¥ equations (A) express the satisfaction of demands in TIMES (and thus defines the 
DEM_Tdm,t variables), and 

¥ equations (B) is the set of all other TIMES constraints 
 
MACRO and TIMES are hard linked via two sets of variables: the energy variables 
DEM_Tdm,t, and the period energy costs COST_Tt. 
 
The aggregate energy input into MACRO (see equation (12-3)), is slightly different from 
the TIMES variables defined above. In the linked model, each term DEM_M is obtained 

by further applying a factor dmtaeeifac ,  as shown in equation (12-9).  

 

t,dmdmtt,dm DEM_MaeeifacDEM_T ⋅= ,                     (12-9) 
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Indeed, the energy demand in the TIMES model can be lower than the energy 
requirement of the MACRO model due to demand reductions, which are caused by 
autonomous energy efficiency improvements and come in addition to those captured in 
the energy sector of the TIMES model. The autonomous energy efficiency improvement 

factor dmtaeeifac ,  is determined in a calibration procedure described in technical note 

ÒDocumentation of the TIMES-MACRO modelÓ, which also discusses the weighing 
coefficients dmb . 

 
The other link consists in accounting for the monetary flowtEC , equal to the 

expenditures made in the energy sector.  Precisely,tEC is equal to the annual 

undiscounted energy system cost of the TIMES model, tCOST_T, (as used in the TIMES 

objective function), augmented with an additional term as shown in equation (12-10): 
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(12-10) 
 
with 

t,pXCAP : portion of the capacity expansion for technology p in period t that is 

penalized. Constraint (12-11) below states that it is the portion exceeding a 
predefined tolerable expansion rate texpf, 

tEC : costs for the production factor energy in the MACRO model, 

qfac: trigger to activate penalty term (0 for turning-off penalty, 1 for using 

penalty term), 

ptcstinv, : specific annualized investment costs of technology p in period t, 

pcapfy : maximum level of capacity for technology p, 

texpf: tolerable expansion between two periods. 

 
Just like in the pure MACRO model, the quadratic penalty term added on the left hand 
side of Eqn. (11) serves to slow down the penetration of technologies. This term plays a 
somewhat similar role as the growth constraints do in the stand-alone TIMES model. The 

variable ptXCAP,  is the amount of capacity exceeding a predefined expansion level 

expressed by the expansion factor texpf  and is determined by the following equation: 

 

( ) ptpttpt XCAPCAPVARexpfCAPVAR ,1,,1 _1_ ++ +!+"  (12-11) 
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with: 
 

t,pCAPVAR_ : total installed capacity of technology p in period t. 

 

As long as the total installed capacity in period t+1 is below ( ) ptt CAPexpf ,1 !+  no 

penalty costs are applied. For the capacity amount ptXCAP ,1+  exceeding this tolerated 

capacity level penalty costs are added to the regular costs of the TIMES model in 
Equation (12-10).  
 
The quadratic term in Eqn. (11) introduces a large number of nonlinear terms (one for 
each technology and period) that may constitute a considerable computational burden for 
large models. These constraints are therefore replaced in the current implementation of 
TIMES, by linear piece-wise approximations in a way quite similar to what was done to 
linearize the surplus in chapter 4. 
 

12.2.3 A brief comment 
 
In spite of the linearization of the penalty terms in equation (12-10), TIMES-Macro still 
contains non-linearities: its objective function is a concave function, a good property 
when maximizing, but there are T nonlinear, non convex constraints as per equation (12-
3) that introduce a non trivial computational obstacle to large size instances of the model.  
 
Although not discussed here, the calibration of the TIMES-MACRO model is an 
exceedingly important task, since the model must agree with the initial state of the 
economy in the dimensions of labor, capital, and the links between the energy sector and 
the economy at large. Fuller details on calibration are provided in the above-mentioned 
technical note. 
 
Overall, the experience with TIMES-MACRO has been good, with sizable model 
instances solved in reasonable time. But the modeler would benefit from carefully 
weighing the limitation of model size imposed by the non-linear nature of TIMES-
MACRO, against the advantage of using a (single sector) general equilibrium model. 
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12.3 The multi-regional TIMES-MACRO model (MSA) 
 
In this section, we only sketch the generalization of TIMES-MACRO to a multi-regional 
setting. Full details, including the important calibration step and other implementation 
issues, appear in technical note ÒTIMES-Macro: Decomposition into Hard-Linked LP 
and NLP ProblemsÓ. 
 

12.3.1 Theoretical background 
 
In a multi-regional setting, inter-regional trade introduces an important new complication 
in the calculation of the equilibrium41. Indeed, the fact that the utility function used in the 
MACRO module is highly non linear also means that the global utility is not equal to the 
sum of the national utilities. Also, it would be impractical and conceptually wrong to 
define a single consumption function for the entire set of regions, since the calibration of 
the model may only be done using national statistics, and furthermore, there may be large 
differences in the parameters of each region's production function, etc.  
It follows from the above that it is not possible to use a single optimization step to 
calculate the global equilibrium. Instead, one must resort to more elaborate approaches in 
order to compute what is termed a Pareto-optimal solution to the equilibrium problem, 
i.e. a solution where the utility of any region may not be improved without deteriorating 
the utility of some other region(s). 
Such a situation has been studied in the economics literature, starting with the seminal 
paper by Negishi (1960) that established the existence of equilibria that are Pareto-
optimal in the Welfare functions. Manne (1999) applied the theory to the MACRO 
model, and Rutherford (1992) proposed a decomposition algorithm that makes the 
equilibrium computation more tractable. The Rutherford algorithm is used in the TIMES-
MACRO model. An interesting review of the applications of Negishi theory to integrated 
assessment models appeared in Stanton (2010). 
 

12.3.2 A sketch of the algorithm to solve TIMES-MACRO-MSA 
 
Rutherford's procedure is an iterative decomposition algorithm. Each iteration has two 
steps. The first step optimizes a large TIMES LP and the second step optimizes a stand-

                                                
41 Of course, if no trade between the regions is assumed, the global equilibrium amounts to a series of 
independent national equilibria, which may be calculated by the single region TIMES-MACRO. 
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alone reduced non-linear program which is an alteration of MACRO, and is named 
MACRO-MSA. These two steps are repeated until convergence occurs.  
Because the two steps must be solved repeatedly, the iterative procedure is 
computationally demanding; furthermore, it is established that the speed of convergence 
is dependent upon the number of trade variables that link the regions. For this and other 
reasons, the trade between regions is limited to a single commodity, namely a numŽraire, 
expressed in monetary units. The numŽraire NTXr,t affects the national account equation 
(12-2) of each region, as follows: 
 

trtrtrtrtr NTXECINVCY ,,,,, +++=
 

 

and is subject to the conservation constraint:  }{  0 , tNTX
r

tr !=" , 

 
which insures that trade is globally balanced. 
 
First step: at each iteration, the first step is the resolution of TIMES using non-elastic 
demands provided by the previous solution of the non-linear program (except at iteration 
1, where demands are either exogenously provided or generated by TIMES42).  
 
Second step: once the TIMES solution is obtained, it is used to form a quadratic 
expression representing an approximation of the aggregate energy cost, to be used in 
MACRO-MSA. Defining this approximation is the crux of Rutherford decomposition 
idea. It replaces the entire TIMES model, thus greatly simplifying the resolution of Step 
2. The global objective function of MACRO-MSA is a weighted sum (over all regions) of 
the regional MACRO welfare functions, where the weights are the Negishi weights for 
each region. The thus modified global objective function is maximized. Then, a 
convergence criterion is checked. If convergence is not observed, the new demands are 
fed into TIMES and a new iteration is started. The Negishi weights are also updated at 
each iteration, leading to a new version of the objective, until the algorithm converges to 
the Pareto-optimal equilibrium.  
 
The adaptation of Rutherford algorithm to TIMES-MACRO was formalized by Kypreos 
(2006) and implemented by Kypreos and Lettila as the above-mentioned technical note. 
  

                                                
42It may be desirable, although not required to use non-zero demand elasticities at the very first iteration. 



131 
 

13 Appendix A: History and comparison of MARKAL and 
TIMES  

 

13.1 A brief history of TIMES43 and MARKAL 
 
The TIMES (The Integrated Markal-EfomSystem) and the MARKAL (MARket 
ALlocation) models have a common history beginning in the 1970's when a formal 
decision of the International Energy Agency (IEA) led to the creation of a common tool 
for analyzing energy systems, to be shared by the participating OECD nations. MARKAL 
became a reality by the year 1980 and became a common tool of the members of the 
Energy Technology Systems Analysis Programme (ETSAP), an IEA Implementing 
Agreement (IA). 
 
Development of the new modeling paradigm was undertaken over a period of three years. 
First a team of national experts from more than sixteen countries met numerous times to 
define the data requirements and mathematics that were to underpin MARKAL. Then the 
actual coding and testing of the model formulation proceeded on two parallel tracks. One 
team at Brookhaven National Laboratory (BNL) embarked on the undertaking employing 
OMNI44, a specialized programming language specifically designed for optimization 
modeling, that was widely used for modeling oil refinery operations. The second team at 
KFA Julich chose to use Fortran to code the model. While both teams initially succeeded, 
changes were quickly necessary that proved to be more manageable in the BNL OMNI 
version of MARKAL than in the KFA Fortran version Ð leading to the decision to 
formally adopt only the BNL OMNI version for general use. A full description of this 
initial incarnation of the model maybe be found in the MARKAL UserÕs Guide 
(Fishbone, 1983). 
 
MARKAL was used intensively by ETSAP members throughout the two decades after 
1980 and beyond, undergoing many improvements. The initial mainframe OMNI version 
of MARKAL was in use until 1990, when BNL ported the model to the person computer 
that was just becoming a viable alternative. At the same time, as part of this move of 
MARKAL to the PC, the first model management system for MARKAL databases and 
model results was developed at BNL which greatly facilitated working with MARKAL 
and opened it up to a new class of users. This PC based shell, MUSS (MARKAL User 
Support System, Goldstein, 1991), provided spreadsheet-like browse/edit facilities for 

                                                
43 With the kind permission of Professor Stephen Hawking 
44A product of Haverly Systems Incorporated, http://www.haverly.com/. 
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managing the input data, Reference Energy System (RES) network diagramming to 
enable viewing the underlying depiction of the energy system, scenario management and 
run submission, and multi-case comparison graphics that collectively greatly facilitated 
the ability to work effectively with MARKAL.  
 
The next big step in the evolution of MARKAL/TIMES arose from the BNL 
collaboration with Professor Alan Manne of Stanford University resulting in the porting 
of MARKAL to the more flexible General Algebraic Modeling System (GAMS), still 
used for TIMES today. The driving motivation for this move to GAMS was to enable the 
creation of MARKAL-MACRO (see chapter 12), a major model variant enhancement 
resulting in a General Equilibrium version of the model. One drawback of MARKAL-
MACRO is that it was implemented as a non-linear programming (NLP) optimization 
model, which limits its usability for large energy system models. 
 
To overcome this shortcoming while embracing one of the main benefits arising from 
MARKAL -MACRO, another major model enhancement was implemented in 1995 from 
a proposal made in 1980 by Giancarlo Tosato (1980), to allow end-use service demands 
to be price sensitive, thus transforming MARKAL from a supply cost optimization model 
to a system computing a supply demand partial equilibrium, named MARKAL-ED 
(Loulou and Lavigne, 1996) while retaining its linear form. An alternative formulation 
using non-linear programming, MARKAL -MICRO (Van Regemorter, 1998) was also 
implemented. Many other enhancements were made in the late 1990's and early 2000's 
and are described in the second comprehensive version of the MARKAL model 
documentation  (Loulou et al., 2004). 
 
The development of ANSWER, the first Windows interface for MARKAL, commenced 
at the Australian Bureau of Agricultural and Resource Economics (ABARE) in Canberra 
in early 1996 with primary responsibility taken by then ABARE staff member Ken 
Noble. By early 1998 the first production version of ANSWER-MARKAL was in use, 
including by most ETSAP Partners. In late 2003 Ken Noble retired from ABARE, 
established Noble-Soft Systems and became the owner of the ANSWER-MARKAL  
software, thereby ensuring its continuing development and support. 
 
By the late 1990's, the need to gather all the existing MARKAL features and to create 
many new ones was becoming pressing, and an international group of ETSAP researchers 
was formed to create what became the TIMES model generator. The main desired new 
features were as follows: 
 

¥ To allow time periods to be of unequal lengths, defined by the user; 
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¥ To allow the user data to control the model structure; 

¥ To make data as independent as possible of the choice of the model periods (data 
decoupling), in particular to facilitate the recalibration of the model when the 
initial period is changed, but also to avoid having to redefine the data when period 
lengths are altered; 

¥ To formally define commodity flows as new variables (as in the EFOM model), 
thus making it easier to model certain complex processes; 

¥ To define vintaged processes that allow input data to change according to the 
investment year; 

¥ To enable the easy creation of flexible processes, a feature that was feasible with 
MARKAL  only by creating multiple technologies; 

¥ To permit time-slices to be entirely flexible with a tiered hierarchy of 
year/season/week/time-of-day to permit much more robust modeling of the power 
sector; 

¥ To improve the representation and calculation of costs in the objective function; 

¥ To formally identify trade processes in order to facilitate the creation of multi-
regional models; 

¥ To define storage processes that carry some commodities from one time-slice to 
another or from some period to another; and 

¥ To implement more dynamic and inter-temporal user-defined constraints. 
 
Definition and development of TIMES began in late 1998, resulting in a beta version in 
1999, and the first production version in year 2000, initially used by only a small number 
of ETSAP members. The transition from MARKAL to TIMES was slower than 
anticipated, mainly because ETSAP modellers already had mature MARKAL databases 
that required serious time and effort to be converted into TIMES databases.  
 
Furthermore there was a need for a TIMES specific model shell to manage the new 
model. Two data handling shells were created during the 2000's by two private 
developers closely associated with ETSAP and with partial support from ETSAP: In the 
early  2000Õs, VEDA_FE (VErsatile Data Analysis -Front End) 
(http://www.kanors.com/Index.asp) and in 2008, ANSWER-TIMES (Noble-Soft 
Systems, 2009). Even before that, a back-end version of VEDA (VEDA_BE, Kanudia 
http://www.kanors.com/Index.asp) had been created to explore and exploit the results and 
create reports. 
 
Following these developments, and as the merits of TIMES over MARKAL became 
increasingly evident, TIMES became the preferred modeling tool for most ETSAP 



134 
 

members, old and new, as well as for energy system modellers who were not formal 
ETSAP members, but were either associated with ETSAP as partners in several outreach 
projects or on their own.  
 
The first complete documentation of the TIMES model generator was written in 2005 and 
made available on the ETSAP website (http://www.iea-etsap.org/web/index.asp). It has 
since been replaced by this documentation. 
 
As the number of modellers increased and they gained experience with TIMES, the 
model underwent many new additions and enhancements, and the number of publications 
based on TIMES rose sharply. One development started in 2000 and achieved by 2005 
was the creation of the first world multi-regional TIMES model (Loulou, 2007) and the 
simultaneous creation of a Climate Module (chapter 7). Together, these two realizations 
allowed ETSAP to participate in the Stanford Energy Modeling Forum (EMF, 
https://emf.stanford.edu/) and conduct global climate change analyses alongside other 
modellers who were mostly using general equilibrium models. Following these 
developments, several ETSAP teams created multiple versions of global TIMES models. 
 
 At the same time other major new features were implemented, some of them found in 
MARKAL though often further advanced in TIMES, such as the Endogenous 
Technological Learning feature (chapter 11), the lumpy investment feature (chapter 10), 
both of which required the use of mixed integer programming, and the multi-stage 
Stochastic Programming option (chapter 8) allowing users to simulate uncertain 
scenarios. A particularly challenging development was to enable the computation of 
general equilibria in a multi -regional setting, since doing so required a methodology 
beyond simple optimization (chapter 12).  
 
Increasingly as TIMES benefitted from many enhancements and gained prominence in 
the community of modellers, and while some features found their way into the MARKAL 
model, in order to provide similar capabilities to the large existing MARKAL user base, 
ETSAP decided that there would be no further development of MARKAL though support 
would continue to be provided to the existing users. By the early 2010's, TIMES (and 
MARKAL) models were recognized as major contributors within the community of 
energy and climate change researchers, and the number of outreach projects increased 
tremendously.  Today it is estimated that MARKAL/TIMES has been introduced to well 
over 300 institutions in more than 80 countries, and is generally considered the 
benchmark integrated energy system optimization platform available for use around the 
world. 
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13.2 A comparison of the TIMES and MARKAL models 
 
This section contains a point-by-point comparison of highlights of the TIMES and 
MARKAL models. It is of interest primarily to modelers already familiar with 
MARKAL, and to provide a sense of the advancements embodied in TIMES. The 
descriptions of the features given below are not detailed, since they are repeated 
elsewhere in the documentation of both models. Rather, the function of this section is to 
guide the reader, by mentioning the features that are present or improved in one model 
that are not found or only in a simplified form in the other. 
 

13.2.1 Similarities 
 
The TIMES and the MARKAL models share the same basic modeling paradigm. Both 
models are technology explicit, dynamic partial equilibrium models of energy markets45. 
In both cases the equilibrium is obtained by maximizing the total surplus of consumers 
and suppliers via Linear Programming, while minimizing total discounted energy system 
cost. Both models are by default clairvoyant, that is, they optimize over the entire 
modeling horizon, though partial look-ahead (or myopic) may also be employed. The two 
models also share the multi-regional feature, which allows the modeler to construct 
geographically integrated (even global) instances, though in MARKAL there are no inter-
regional exchange process making the representation of trade (much) more cumbersome. 
These fundamental features were described in Chapter 3 of this documentation, and 
Section 1.3, PART I of the MARKAL documentation, and constitute the backbone of the 
common paradigm. However, there are also significant differences in the two models, 
which we now outline. These differences do not affect the basic paradigm common to the 
two models, but rather some of their technical features and properties.  
 

13.2.2 TIMES features not in MARKAL 
 
13.2.2.1 Variable length time periods 
 
MARKAL has fixed length time periods, whereas TIMES allows the user to define 
period lengths in a completely flexible way. This is a major model difference, which 
indeed required a complete re-definition of the mathematics of most TIMES constraints 
and of the TIMES objective function. The variable period length feature is very useful in 

                                                
45 But recall that some extensions depart from the classical equilibrium properties, see chapters 8-12. 
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two instances: first if the user wishes to use a single year as initial period (quite useful for 
calibration purposes), and second when the user contemplates long horizons, where the 
first few periods may be described in some detail by relatively short periods (say 5 years), 
while the longer term may be regrouped into a few periods with long durations (perhaps 
20 or more years). 
 
13.2.2.2 Data decoupling  
 
This somewhat misunderstood feature does not confer additional power to TIMES, but it 
greatly simplifies the maintenance of the model database and allows the user great 
flexibility in modifying the new definition of the planning horizon. In TIMES all input 
data are specified by the user independently from the definition of the time periods 
employed for a particular model run. All time-dependent input data are specified by the 
year in which the data applies. The model then takes care of matching the data with the 
periods, wherever required. If necessary the data is interpolated (or extrapolated) by the 
model preprocessor code to provide data points at those time periods required for the 
current model run. In addition, the user has control over the interpolation and 
extrapolation of each time series.  
 
The general rule of data decoupling applies also to past data: whereas in MARKAL the 
user had to provide the residual capacity profiles for all existing technologies in the initial 
period, and over the periods in which the capacity remains available, in TIMES the user 
may provide technical and cost data at those past years when the investments actually 
took place, and the model takes care of calculating how much capacity remains in the 
various modeling periods. Thus, past and future data are treated essentially in the same 
manner in TIMES.  
 
One instance when the data decoupling feature immensely simplifies model management 
is when the user wishes to change the initial period, and/or the lengths of the periods. In 
TIMES, there is essentially nothing to do, except declaring the dates of the new periods. 
In MARKAL, such a change represents a much larger effort requiring a substantive 
revision of the database. 
 
13.2.2.3 Flexible time slices and storage processes 
 
In MARKAL, only two commodities have time-slices: electricity and low temperature 
heat, with electricity having seasonal and day/night time-slices, and heat having seasonal 
time-slices. In TIMES, any commodity and process may have its own, user-chosen time-
slices. These flexible time-slices are segregated into three groups, seasonal (or monthly), 
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weekly (weekday vs. weekend), and daily (day/night or hourly), where any level may be 
expanded (contracted) or omitted. 
 
The flexible nature of the TIMES time-slices supports storage processes that ÕconsumeÕ 
commodities at one time-slice and release them at another. MARKAL only supports 
night-to-day (electricity) storage. 
 
Note that many TIMES parameters may be time-slice dependent (such as availability 
factor (AF), basic efficiency (ACT_EFF), etc. 
 
13.2.2.4 Process generality 
 
In MARKAL processes in different RES sectors are endowed with different (data and 
mathematical) properties. For instance, end-use processes do not have activity variables 
(activity is then equated to capacity), and resource processes have no investment 
variables. In TIMES, all processes have the same basic features, which are activated or 
not solely via data specification, with some additional special features relevant to trade 
and storage processes.  
 
13.2.2.5 Flexible processes 
 
In MARKAL processes are by definition rigid, except for some specialized processes 
which permit flexible output (such as limit refineries or pass-out turbine CHPs), and thus 
outputs and inputs are in fixed proportions with one another. In TIMES, the situation is 
reversed, and each process starts by being entirely flexible, unless the user specifies 
certain attributes to rigidly link inputs to outputs. This feature permits better modeling of 
many real-life processes as a single technology, where MARKAL may require several 
technologies (as well as dummy commodities) to achieve the same result. A typical 
example is that of a boiler that accepts any of 3 fuels as input, but whose efficiency 
depends on the fuel used. In MARKAL, to model this situation requires four processes 
(one per possible fuel plus one that carries the investment cost and other parameters), 
plus one dummy fuel representing the output of the three ÒblendingÓ process. In TIMES 
one process is sufficient, and no dummy fuel is required. Note also that TIMES has a 
number of parameters that can limit the input share of each fuel, whereas in MARKAL, 
imposing such limits requires that several user constraints be defined.46 

                                                
46In the end the two models use equivalent mathematical expressions to represent a flexible process. 
However, TIMES reduces the userÕs effort to a minimum, while MARKAL requires the user to manually 
define the multiple processes, dummy fuels and user constraints. 
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13.2.2.6 Investment and dismantling lead-times and costs 
 
New TIMES parameters allow the user to model the construction phase and dismantling 
of facilities that have reached their end-of-life. These are: lead times attached to the 
construction or to the dismantling of facilities, capital costs for dismantling, and 
surveillance costs during dismantling. Like in MARKAL, there is also the possibility to 
define flows of commodities consumed at construction time, or released at dismantling 
times, thus allowing the representation of life-cycle energy and emission accounting. 
 
13.2.2.7 Vintaged processes and age-dependent parameters 
 
The variables associated with user declared vintaged processes employ both the time 
period p and vintage period v (in which new investments are made and associated input 
data is obtained). The user indicates that a process is to be modeled as a vintaged process 
by using a special vintage parameter. Note that in MARKAL vintaging is possible only 
for end-use devices (for which there is no activity variable) and only applies to the device 
efficiency (and investment cost, which is always vintaged by definition for all 
technologies) or via the definition of several replicas of a process, each replica being a 
different vintage. In TIMES, the same process name is used for all vintages of the same 
process.47 
 
In addition, some parameters may be specified to have different values according to the 
age of the process. In the current version of TIMES, these parameters include the 
availability factors, the in/out flow ratios (equivalent to efficiencies), and the fixed cost 
parameters only. Several other parameters could, in principle, be defined to be age-
dependent, but such extensions have not been implemented yet. 
 
13.2.2.8 Commodity related variables 
 
MARKAL has very few commodity related variables, namely exports/imports, and 
emissions. TIMES has a large number of commodity-related variables such as: total 
production, total consumption, but also (and most importantly) specific variables 
representing the flows of commodities entering or exiting each process. These variables 
                                                
47The representation of vintage as a separate index helps eliminate a common confusion that existed in 
MARKAL, namely the confusion of vintage with the age of a process. For instance, if the user defines in 
MARKAL an annual O&M cost for a car, equal to 10 in 2005 and only 8 in 2010, the decrease would not 
only apply to cars purchased in 2010, but also to cars purchased in 2005 and earlier when they reach the 
2010 period. 
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provide the user with many ÒhandlesÓ to define bounds and costs on commodity flows, 
and foster easier setup of user constraints looking to impose shares across technology 
groups (e.g., renewable electricity generation targets, maximum share of demand that can 
be met by a (set of) devices).  
 
13.2.2.9 More accurate and realistic depiction of investment cost payments 
 
In MARKAL each investment is assumed to be paid in its entirety at the beginning of 
thetime period in which it becomes available. In TIMES the timing of investment 
payments is quite detailed. For large facilities (e.g. a nuclear plant), capital is 
progressively laid out in yearly increments over the facilityÕs construction time, and 
furthermore, the payment of each increment is made in installments spread over the 
economic life (which may differ from the technical lifetime) of a facility. For small 
processes (e.g. a car) the capacity expansion is assumed to occur regularly each year 
rather than in one large lump, and the payments are therefore also spread over time. 
Furthermore, when a time period is quite long (i.e. longer that the life of the investment), 
TIMES has an automatic mechanism to repeat the investment more than once over the 
period. These features allow for a much smoother (and more realistic) representation of 
the stream of capital outlays in TIMES than in MARKAL.  
 
Moreover, in TIMES all discount rates can be defined to be time-dependent, whereas in 
MARKAL both the general and technology-specific discount rates are constant over time. 
 
13.2.2.10 Stochastic Programming 
 
Both MARKAL and TIMES support stochastic programming (SP, Chapter 8) as a means 
for examining uncertainty and formulating hedging strategies to deal with same. In 
MARKAL only 2-stage SP was implemented, and thus the resolution of the uncertainty 
could only occur at one particular time period, whereas in TIMES uncertainty may be 
resolved progressively at different successive periods (e.g., mitigation level at 
one period and demand level at another). 
 
13.2.2.11 Climate module 
 
TIMES possesses a set of variables and equations that endogenize the concentration of 
CO2, CH4, and N2O, and also calculate the radiative forcing and global temperature 
changes resulting from GHG emissions and accumulation here. This new feature is 
described in Chapter 7. 
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14 Appendix B: Linear Programming complements 
 
This section is not strictly needed for a basic understanding of the TIMES model and may 
be skipped a first reading. However, it provides additional insight into the 
microeconomics of the TIMES equilibrium. In particular, it contains a review of the 
theoretical foundation of Linear Programming and Duality Theory. This knowledge may 
help the user to better understand the central role shadow prices and reduced costs play in 
the economics of the TIMES model. More complete treatments of Linear Programming 
and Duality Theory may be found in several standard textbooks such as Chv‡tal (1983) or 
Hillier and Lieberman (1990 and subsequent editions). Samuelson and Nordhaus (1977) 
contains a treatment of micro-economics based on mathematical programming. 
 
 

14.1 A brief primer on Linear Programming and Duality Theory 

14.1.1 Basic definitions 
 
In this subsection, the superscript t following a vector or matrix represents the transpose 
of that vector or matrix. A Linear Program may always be represented as the following 
Primal Problem in canonical form:  
 

Max ctx      (14-1) 
s.t.  Ax ( b        (14-2) 

x & 0       (14-3) 
 
where x is a vector of decision variables, ctx is a linear function representing the objective 
to maximize, and Ax ' b  is a set of inequality constraints. Assume that the LP has a finite 
optimal solution, x*.  
 
Then each decision variable, x* j falls into one of three categories. x* 

j may be: 
 

¥ equal to its lower bound (as defined in a constraint), or 
¥ equal to its upper bound, or  

¥ strictly between the two bounds. 
 
In the last case, the variable x* j is called basic. Otherwise it is non-basic. 
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For each primal problem, there corresponds a Dual problem derived as follows:  
 
 Min  bt y      (14-4) 
s.t.  Aty ) c        (14-5) 
 y ) 0       (14-6) 
 
Note that the number of dual variables equals the number of constraints in the primal 
problem. In fact, each dual variable yi may be assigned to its corresponding primal 
constraint, which we represent as: Aix ' b i, where Ai is the ith row of matrix A. 
 

14.1.2 Duality Theory 
 
Duality theory consists mainly of three theorems48: weak duality, strong duality, and 
complementary slackness.  
 
Weak Duality Theorem 
If x is any feasible solution to the primal problem and y is any feasible solution to the 
dual, then the following inequality holds:  
 

ctx' b ty      (14-7) 
 
The weak duality theorem states that the value of a feasible dual objective is never 
smaller than the value of a feasible primal objective. The difference between the two is 
called the duality gap for the pair of feasible primal and dual solutions (x,y). 
 
Strong duality theorem 
If the primal problem has a finite, optimal solution x*, then so does the dual problem (y*), 
and both problems have the same optimal objective value (their duality gap is zero):  
 
 ctx* = bty*       (14-8) 
 
Note that the optimal values of the dual variables are also called the shadow prices of the 
primal constraints. 
 
 
 

                                                
48 Their proofs may be found in the textbooks on Linear Programming already referenced. 
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Complementary Slackness theorem 
At an optimal solution to an LP problem:  

¥ If y*i is > 0 then the corresponding primal constraint is satisfied at equality (i.e. 
Aix*=bi and the ith primal constraint is called tight. Conversely, if the ith primal 
constraint is slack (not tight), then y*i = 0, 

¥ If x*j is basic, then the corresponding dual constraint is satisfied at equality, (i.e. 
At

j*y =cj, where At
j is the jth row of At, i.e. the jth column of A. Conversely, if the 

jth dual constraint is slack, then x*j is equal to one of its bounds. 
 
Remark: Note however that a primal constraint may have zero slack and yet have a dual 
equal to 0. And, a primal variable may be non basic (i.e. be equal to one of its bounds), 
and yet the corresponding dual slack be still equal to 0. These situations are different 
cases of the so-called degeneracy of the LP. They often occur when constraints are over 
specified (a trivial case occurs if a constraint is repeated twice in the LP)  
 
 

14.2 Sensitivity analysis and the economic interpretation of dual variables 
 
It may be shown that if the jth RHS bj of the primal is changed by an infinitesimal amount 
d, and if the primal LP is solved again, then its new optimal objective value is equal to 
the old optimal value plus the quantity yj*¥d, where yj*  is the optimal dual variable value.  
 
Loosely speaking49, one may say that the partial derivative of the optimal primal 
objective functionÕs value with respect to the RHS of the ith primal constraint is equal to 
the optimal shadow price of that constraint. 
 

14.2.1 Economic interpretation of the dual variables 
 
If the primal problem consists of maximizing the surplus (objective function ctx), by 
choosing an activity vector x, subject to upper limits on several resources (the b vector) 
then:  
 

¥ Each aij  coefficient of the dual problem matrix, A, then represents the 
consumption of resource bj by activity xi; 

¥ The optimal dual variable value y*j is the unit price of resource j, and 

                                                
49 Strictly speaking, the partial derivative may not exist for some values of the RHS, and may then be 
replaced by a directional derivative (see Rockafellar 1970). 
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¥ The total optimal surplus derived from the optimal activity vector, x*, is equal to 
the total value of all resources, b, priced at the optimal dual values y* (strong 
duality theorem). 

 
Furthermore, each dual constraint At

j*y& cj  has an important economic interpretation. 
Based on the Complementary Slackness theorem, if an LP solution x* is optimal, then for 
each x* j that is not equal to its upper or lower bound (i.e. each basic variable x* j), there 
corresponds a tight dual constraint y*AÕj = cj, which means that the revenue coefficient cj 
must be exactly equal to the cost of purchasing the resources needed to produce one unit 
of x j. In economistsÕ terms, marginal cost equals marginal revenue, and both are equal to 
the market price of x*  j.  If a variable is not basic, then by definition it is equal to its 
lower bound or to its upper bound. In both cases, the unit revenue cj need not be equal to 
the cost of the required resources. The technology is then either non-competitive (if it is 
at its lower bound) or it is super competitive and makes a surplus (if it is at its upper 
bound). 
 
Example: The optimal dual value attached to the balance constraint of commodity c 
represents the change in objective function value resulting from one additional unit of the 
commodity. This is precisely the internal unit price of that commodity. 
 

14.2.2 Reduced surplus and reduced cost 
 
In a maximization problem, the difference y*AÕj - cj is called the reduced surplus of 
technology j, and is available from the solution of a TIMES problem. It is a useful 
indicator of the competitiveness of a technology, as follows: 
 

¥ If x*  j is at its lower bound, its unit revenue cj is less than the resource cost (i.e. its 
reduced surplus is positive). The technology is not competitive (and stays at its 
lower bound in the equilibrium); 

¥ If x* j is at its upper bound, revenue cj is larger than the cost of resources (i.e. its 
reduced surplus is negative). The technology is super competitive and produces a 
surplus; and 

¥ If x*  j is basic, its reduced surplus is equal to 0. The technology is competitive but 
does not produce a surplus. 

 
We now restate the above summary in the case of a Linear Program that minimizes cost 
subject to constraints: 
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 Min ctx        
s.t.  Ax ) b          
 x ) 0  
 
In a minimization problem (such as the usual formulation of TIMES), the difference cj - 
y*AÕj  is called the reduced cost of technology j. The following holds: 
 

¥ If x*  j is at its lower bound, its unit cost cj  is larger than the value created (i.e. its 
reduced cost is positive). The technology is not competitive (and stays at its 
lower bound in the equilibrium); 

¥ if  x* j is at its upper bound, its cost cj is less than the value created (i.e. its 
reduced cost is negative). The technology is super competitive and produces a 
profit; and 

¥ if  x*  j is basic, its reduced cost is equal to 0. The technology is competitive but 
does not produce a profit 

 
The reduced costs/surpluses may thus be used to rank all technologies, including those 
that are not selected by the model. 
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